ЧУДЕСА В РЕШЕТЕ Автор презентации: Дяткинская Дарья, ученица 11 класса
Носить воду в решете возможно только в сказке? Или физика может помочь исполнить такое классически невозможное дело? Предположения Носить воду в решете невозможно, т.к. оно имеет множество сквозных отверстий. Носить воду решетом можно, но при выполнении определенных условий.
Опытным путем проверить: держится ли вода в решете. Провести эксперимент по созданию возможности удержания воды в решете. Изучить явления смачивания и несмачивания. Провести эксперимент и определить причины явлений. Полезны ли людям изучаемые явления?
Возьмём проволочное решето с не слишком мелкими ячейками (около 1мм) и опустим его в растопленный парафин. Вынимаем решето: оно покрыто тонким слоем парафина, едва заметным для глаза. Решето осталось решетом: в нем есть сквозные отверстия, через которые свободно проходит булавка, но теперь вы можете в буквальном смысле слова носить в нем воду. Как это возможно?
Потому что, не смачивая парафин, вода образует в ячейках решета тонкие пленки, обращенные выпуклостью вниз, которые и удерживают воду. Такое парафинированное решето можно положить на воду, и оно будет держаться на ней. Значит, можно не только носить воду в решете, но и даже плавать в нем.
Жидкость, которая растекается по поверхности твердого тела, называется смачивающей, а жидкость, которая стягивается в каплю, – несмачивающей. Различие краевых углов в явлениях смачивания и несмачивания объясняется соответствием сил притяжения между молекулами твердого тела и жидкостей и сил межмолекулярного притяжения в жидкостях. Если силы притяжения между молекулами твердого тела и жидкости >F притяжения между молекулами жидкости, то жидкость будет смачивающей. Если молекулярное притяжение жидкости (внутри) >F притяжения между молекулами твердого тела и жидкости, то жидкость будет несмачивающей. Q90° – несмачивание Q – угол смачивания Q =0 ° - идеальное не смачивание Q =180 ° - идеальное смачивание Q Q
На поверхность чистой горячей воды поместим кусочек воска. Воск расплавится и растечется по поверхности воды тонким слоем. Остывая, воск затвердеет тонкой пластинкой. Разделим её на 2 части и поместим горизонтально, предварительно перевернув одну из частей. Нанесем на поверхность пластинок капли чистой воды. Капли ведут себя совсем по-разному. На той поверхности воска, которая соприкасалась с воздухом, капля воды будет иметь такую же форму, как ртуть на стекле – в этом случае вода не смачивает воск. На поверхности, соприкасавшейся с водой, капля воды медленно растечется, образуя тонкую пленку – в этом случае вода смачивает ту же пластину воска. В чем здесь секрет?
ПОЧЕМУ ОДНО И ТО ЖЕ ВЕЩЕСТВО ИМЕЕТ СВОЙСТВО СМАЧИВАНИЯ И НЕСМАЧИВАНИЯ ЖИДКОСТЬЮ ОДНОВРЕМЕННО? Молекулы многих веществ довольно сложны, благодаря этому различные части такой молекулы могут обнаруживать различные силы сцепления при взаимодействии с другими молекулами. Если каким-либо образом расположить подобные молекулы так, что в одну сторону будут обращены концы, сильно взаимодействующие с водой, а в другую – слабо взаимодействующие, то получится пластинка, одна поверхность которой будет смачиваться водой, а другая нет. Воск на горячей воде плавится, и молекулы жидкого воска поворачиваются, притягиваясь своими сильно взаимодействующими с водой концами к поверхности воды. В таком положении они застывают, когда вода охлаждается, и в результате получается та двухсторонняя пластинка, свойства которой мы обнаружили в эксперименте.
Мы налили воды в бокал до краев. Он полон. Может быть, для одной - двух булавок найдется место в бокале? Начнем бросать булавки и считать их. Булавки упали на дно – уровень воды остался неизменным. Десять, двадцать, тридцать булавок… жидкость не выливается. Пятьдесят, шестьдесят, семьдесят… Целая сотня булавок лежит на дне, а вода из бокала все еще не выливается. Не только не выливается, но даже и не поднялась сколько-нибудь заметным образом над краями. Продолжаем добавлять булавки. Вторая, третья, четвертая сотня булавок очутилась в сосуде – и ни одна капля не перелилась через край; но теперь уже видно, как поверхность воды вздулась, возвышаясь немного над краями бокала. В этом вздутии вся разгадка непонятного явления. Вода мало смачивает стекло, если оно (пусть даже совсем чуть-чуть) загрязнено жиром; края же бокала, как и вся употребляемая нами посуда, неизбежно покрывается следами жира от прикосновения пальцев. Не смачивая краев, вода, вытесняемая булавками из бокала, образует выпуклость.
Кажется, невозможно заставить стальной предмет плавать на поверхности воды, а ведь это не так трудно сделать. Аккуратно возьмем иголку посередине и уроним её в горизонтальном положении на поверхность воды. Вместо иголки можно взять булавку, легкую пуговицу, мелкие плоские металлические предметы. Наловчившись, можно заставить плавать даже копейку.
Причина плавания этих предметов нам уже известна: вода плохо смачивает металл, побывавший в руках и потому покрытый тончайшим слоем жира. Оттого вокруг плавающего предмета на поверхности воды образуется вдавленность, её можно даже видеть. Поверхностная пленка жидкости, стремясь распрямиться, оказывает давление вверх на предметы и тем поддерживает их. Поддерживает предметы, согласно закону плавания, и выталкивающая сила жидкости: игла, скрепка, перо и другие предметы выталкиваются снизу с силой, равной весу вытесненной ими воды.
Применение смачивания: умывание, крашение, стирка, пайка, склеивание, флотация руд. Применение несмачивания: смоление бочек и лодок, смазывание салом пробок и втулок, окрашивание масляной краской и вообще покрытие маслянистыми веществами всех тех предметов, которые мы хотим сделать водонепроницаемыми, изготовление тканей для плащей, курток, зонтиков.
С помощью законов физики можно создать решето и носить в нем воду, оно будет даже плавать. Межмолекулярные силы взаимодействия объясняют явления смачивания и несмачивания, которые встречаются в жизни каждый день и важны для людей.