ПРАВИЛЬНЫЕ МНОГОГРАННИКИ Работу выполнили ученицы 10 класса школы 26 Невского района г.Санкт-Петербурга Агапова Алена, Кузнецова Александра, Махахурина.

Презентация:



Advertisements
Похожие презентации
Многогранники вокруг нас Математика владеет не только истиной, но и высшей красотой - отточенной и строгой, возвышенно чистой и стремящейся к подлинному.
Advertisements

Многогранники вокруг нас Подготовила учитель математики и информатики Полищук И.В.
Многогранни ки вокруг нас Самохвалова Т.М Математика владеет не только истиной, но и высшей красотой - отточенной и строгой, возвышенно чистой и стремящейся.
Выполнила ученица 10 класса Мялинцева Любовь. 1. Понятие многогранника 2. Определение правильного многогранника 3. Сколько существует правильных многогранников.
Творческая работа Творческая работа Ученицы 10 « Б » класса Ученицы 10 « Б » класса Средней школы 9 Средней школы 9 Цветковой Алисы Цветковой Алисы Артемьевной.
Правильные многогранники Человек проявляет интерес к правильным многоугольникам и многогранникам на протяжении всей своей сознательной деятельности –
Презентацию подготовила Шевцова Маргарита, СО-ТВ-13.
Многогранники вокруг нас или мы внутри многогранника?
Работу выполнил ученик 11 класса Джалмурзинов Аслан.
Платоновы тела Автор работы: Синица Саша 10 в. Платоновыми телами называются правильные однородные выпуклые многогранники, то есть выпуклые многогранники,
«Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные.
Многогранники вокруг нас или мы внутри многогранника? Кузнецова Валентина Ивановна МБОУ г.Уварово План урока по геометрии в 10 классе.
(фантазия на тему «МНОГОГРАННИКИ») «В огромном саду геометрии каждый найдет букет себе по вкусу.» Д. Гильберт.
Презентация на тему "Правильные многогранники"
Удивительный мир многогранников Преподаватель математики В.А. Чепуштанова.
Многогранник- это тело, поверхность которого состоит из конечного числа плоских многоугольников. Многогранник- это тело, поверхность которого состоит.
Выполнила: Кретова А. Проверила: Густова Г.Е.. «В огромном саду геометрии каждый найдет букет себе по вкусу.» Д. Гильберт.
содержание Правильные многогранники (Правильные многогранники (тела Платона) Тетраэдр Гексаэдр Октаэдр Додекаэдр Икосаэдр Историческая справка Где можно.
Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству,
Учитель математики Шурупова С.В, Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся.
Транксрипт:

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ Работу выполнили ученицы 10 класса школы 26 Невского района г.Санкт-Петербурга Агапова Алена, Кузнецова Александра, Махахурина Ксения, Окишева Анастасия

Цель проекта: Познакомиться с правильными многогранниками. Изучить их формы и узнать где они встречаются. Исследовать практическое применение многогранников.

ЗАДАЧИ: Развивать эстетическое восприятие математический фактов, расширить представление о сфере применения математики. Развивать эстетическое восприятие математический фактов, расширить представление о сфере применения математики. Расширить кругозор посредством знакомства с лучшими образцами живописи и архитектуры. Расширить кругозор посредством знакомства с лучшими образцами живописи и архитектуры. Проследить историю развития многогранников. Проследить историю развития многогранников. Исследовать проявление и применение геометрии в природе и различных сферах деятельности человека. Исследовать проявление и применение геометрии в природе и различных сферах деятельности человека.

МЕТОДЫ: Работа с литературой. Работа с интернет-ресурсами. Беседа с преподавателем математики. Наблюдение.

Виды многогранников Многогранник - это поверхность составленная из многоугольников, а также тело ограниченное такой поверхностью. Многогранник - это поверхность составленная из многоугольников, а также тело ограниченное такой поверхностью.

Многогранники Однородные выпуклые Однородные невыпуклые Тела Архимеда Тела Платона Выпуклые призмы и антипризмы Тела Кеплера- Пуансо Невыпуклые полуправильные однородные многогранники Невыпуклые призмы и антипризмы

Правильными многогранниками называют выпуклые многогранники, все грани и все углы которых равны, причем грани - правильные многоугольники. В каждой вершине правильного многогранника сходится одно и то же число рёбер. Все двугранные углы при рёбрах и все многогранные углы при вершинах правильного многоугольника равны. Правильные многогранники - трехмерный аналог плоских правильных многоугольников.

Существует лишь пять выпуклых правильных многогранников - тетраэдр, октаэдр и икосаэдр с треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями. Эти тела еще называют телами Платона.

огонь тетраэдр икосаэдр октаэдр гексаэдр вселенная додекаэдр вода земля воздух Платон предположил, что атомы четырех «основных элементов» (земля, вода, воздух и огонь), из которых строится все сущее, имеют форму правильных многогранников: тетраэдр – огонь, гексаэдр (куб) – земля, октаэдр – воздух, икосаэдр – вода. Пятый многогранник - додекаэдр – символизировал «Великий Разум» или «Гармонию Вселенной». Частицы трех стихий, которые легко превращаются друг в друг, а именно огонь, воздух и вода, оказались составленными из одинаковых фигур – правильных треугольников. А земля, существенно отличающаяся от них, состоит из частиц другого вида – кубов, а точнее квадратов.

Тетраэдр -правильный четырехгранник. Он ограничен четырьмя равносторонними треугольниками (это - правильная треугольная пирамида). -правильный четырехгранник. Он ограничен четырьмя равносторонними треугольниками (это - правильная треугольная пирамида).

Гексаэдр - правильный шестигранник. Это куб состоящий из шести равных квадратов. - правильный шестигранник. Это куб состоящий из шести равных квадратов.

Октаэдр -правильный восьмигранник. Он состоит из восьми равносторонних и равных между собой треугольников, соединенных по четыре у каждой вершины. -правильный восьмигранник. Он состоит из восьми равносторонних и равных между собой треугольников, соединенных по четыре у каждой вершины.

Додекаэдр -правильный двенадцатигранник, состоит из двенадцати правильных и равных пятиугольников, соединенных по три около каждой вершины -правильный двенадцатигранник, состоит из двенадцати правильных и равных пятиугольников, соединенных по три около каждой вершины

Икосаэдр - состоит из 20 равносторонних и равных треугольников, соединенных по пять около каждой вершины - состоит из 20 равносторонних и равных треугольников, соединенных по пять около каждой вершины

Число =В-Р+Г называется эйлеровой характеристикой многогранника. Согласно теореме Эйлера, для выпуклого многогранника эта характеристика равна 2. То,что эйлерова характеристика равна 2 для некоторых знакомых нам многогранников, видно из таблицы. Теорема Эйлера. Пусть В --- число вершин выпуклого многогранника, Р --- число его рёбер и Г --- число граней. Тогда верно равенство В-Р+Г=2

Правильные многогранники - самые выгодные фигуры. И природа этим широко пользуется. Кристаллы эти твёрдые тела имеют естественную форму правильных многогранников.

Молекула МЕТАНА имеет форму правильного тетраэдра. Этот факт подтверждается фотографиями молекулы метана, полученными при помощи электронного микроскопа. Эта форма следствие упорядоченного расположения в кристалле атомов, образующих трёхмерно-периодическую пространственную укладку кристаллическую решетку. Кристаллы

Кристаллы поваренной соли имеют форму куба, кристаллы льда и горного хрусталя (кварца) напоминают отточенный с двух сторон карандаш, т.е. имеют форму шестиугольной призмы, на основания которой поставлены шестиугольные пирамиды. Алмаз чаще всего встречается в виде октаэдра, иногда куба. Исландский шпат, который раздваивает изображение, имеет форму косого параллелепипеда. Кварц Кристалл поваренной соли

Форму одноклеточных организмов – феодарий точно передает икосаэдр. Форму одноклеточных организмов – феодарий точно передает икосаэдр. Чем же вызвана такая природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший объем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи. Чем же вызвана такая природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший объем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи. Одноклеточные организмы

Пятничный многогранник: огуречный вирус Пятничный многогранник: огуречный вирус На картинке – вирус, поражающий ценные растения типа помидоров и огурцов. Пятничный многогранник: огуречный вирус Именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Вирусы

ДНК ДНК генетического кода жизни – представляет собой четырехмерную развертку (по оси времени) вращающегося додекаэдра! В процессе деления яйцеклетки сначала образуется тетраэдр из четырех клеток, затем октаэдр, куб и, наконец, додекаэдро- икосаэдрическая структура гаструлы.

Искусство в прочем, многогранники - отнюдь не только объект научных исследований. Их формы - завершенные и причудливые, широко используются в декоративном искусстве. Ярчайшим примером художественного изображения многогранников в XX веке являются, конечно, графические фантазии Маурица Корнилиса Эшера ( ), голландского художника, родившегося в Леувардене. Мауриц Эшер в своих рисунках как бы открыл и интуитивно проиллюстрировал законы сочетания элементов симметрии, т.е. те законы, которые властвуют над кристаллами, определяя и их внешнюю форму, и их атомную структуру, и их физические свойства. Гравюра. Звезды.

Так как правильные многогранники обладают жесткостью, то каркасы куполов церквей делают в виде правильных многогранников Многогранники в архитектуре

Кто был в Москве, знает, как красив Кремль. Прекрасны его башни! Сколько интересных геометрических фигур положено в их основу! Набатная башня Кремля составлена из нескольких параллелепипедов. На высоком параллелепипеде стоит параллелепипед поменьше, с проемами для окон, а еще выше воздвигнута четырехугольная усеченная пирамида. На ней расположены четыре арки, увенчанные восьмиугольной пирамидой.