ПРОЕКТ Геометрическая вероятность. Теория вероятностей, 9 класс.

Презентация:



Advertisements
Похожие презентации
Геометрическая вероятность Теория вероятностей, 12 класс.
Advertisements

Урок 3 Геометрическая вероятность.. Геометрическая модель. Многие практические задачи приводят к вопросам теории вероятности, которые не укладываются.
Вероятностные модели Построение информационной модели с использованием метода Монте-Карло.
Теория вероятностей – изучает закономерности случайных событий. Случайное событие – событие, которое может произойти или не произойти в процессе наблюдения.
Геометрическая вероятность Яфаева Сабина, 11 класс МБОУ СОШ 4 г. Туймазы Руководитель Давлетшина Фанзиля Мусагитовна.
1 Теория вероятностей и математическая статистика Занятие 1. Элементы комбинаторики. Определение вероятности. Простейшие задачи Преподаватель – доцент.
. 5 класс Обеспечить усвоение понятий окружности, круга и их элементов (радиуса, диаметра, хорды). Рассмотреть соотношение между диаметром и радиусом.
Принцип Дирихле. Задачи и решенияПринцип Дирихле. Задачи и решения.
Теорема 1. Через прямую и не лежащую на ней точку проходит плоскость и притом только одна. Дано:а, М ¢ а Доказать:(а, М) с α α- единственная а М α Доказательство.
Теория вероятностей и математическая статистика Лекция 1. Введение. Основные понятия теории вероятностей. Элементы комбинаторики.
Компьютерное обучение.. Живая геометрия. Программа «Живая геометрия» это виртуальный конструктор, предназначенный для построения геометрических фигур.
§2. Алгебра событий. Вероятность. Пусть - пространство элементарных событий. | | = n, n или n =. Каждое множество событий пространства называют классом.
Математику многие любят за ее вечные истины: дважды два всегда четыре, сумма четных чисел четна, а площадь прямоугольника равна произведению его смежных.
СФЕРА И ШАР. План презентации: Определение сферы, шара. Уравнение сферы. Взаимное расположение сферы и плоскости. Площадь сферы. Итог урока.
Слайды по геометрии для 10 класса Учитель:Ледовская О.М.
Решение задач по теме «Параллельность прямой и плоскости» а α.
Теория вероятностей Основные понятия. Этапы развития теории вероятностей »2-я половина XVI века – первые задачи » по теории вероятностей. Конец XVII-
Учащиеся 11 класса ОКРУЖНОСТЬ И КРУГ. определенияопределения Окружность замкнутая линия, все точки которой находятся на одинаковом расстоянии от данной.
Сфера и шар Сферой называется фигура, состоящая из всех точек пространства, удаленных от данной точки, называемой центром, на данное расстояние, называемое.
Автор: Яковлева Екатерина. Об авторе Ученица 8 «А» средней школы 427. Яковлева Екатерина Александровна Дата рождения года. Проект по Теории.
Транксрипт:

ПРОЕКТ Геометрическая вероятность. Теория вероятностей, 9 класс.

Основной вопрос: Как связано понятие вероятности с геометрией? Задачи: 1.Провести серию опытов. 2.Сформулировать геометрическое понятие вероятности. 3.Изучить литературу по данному вопросу. 4.Сделать выводы. Подтвердить или опровергнуть гипотезу. 5.Составить задачи на нахождение вероятностей.

Серия опытов. Серия опытов, приводящих к определению вероятности из геометрических соображений.

Опыт 1. Выберем на географической карте мира случайную точку (например, зажмурим глаза и покажем указкой). Какова вероятность, что эта точка окажется в России? Число исходов бесконечно. Вероятность будет зависеть от размера карты (масштаба).

Опыт 1. Выберем на географической карте мира случайную точку (например, зажмурим глаза и покажем указкой). Какова вероятность, что эта точка окажется в России? ГИПОТЕЗА: Очевидно, для ответа на вопрос нужно знать, какую часть всей карты занимает Россия. Точнее, какую часть всей площади карты составляет Россия. Отношение этих площадей и даст искомую вероятность.

Общий случай: в некоторой ограниченной области случайно выбирается точка. Какова вероятность, что точка попадет в область А? На прямую L? А L

Геометрическое определение вероятности Если предположить, что попадание в любую точку области равновозможно, то вероятность попадания случайной точки в заданное множество А будет равна отношению площадей: Если А имеет нулевую площадь, то вероятность попадания в А равна нулю. Можно определить геометрическую вероятность в пространстве и на прямой:

Опыт 2. В квадрат со стороной 4 см «бросают» точку. Какова вероятность, что расстояние от этой точки до ближайшей стороны квадрата будет меньше 1 см? Закрасим в квадрате множество точек, удаленных от ближайшей стороны меньше, чем на 1 см. Площадь закрашенной части квадрата 16см 2 – 4см 2 = 12см 2. Значит,

Опыт 3. На тетрадный лист в линейку наудачу бросается монета. Какова вероятность того, что монета пересекла две линии? Число исходов зависит от размеров монеты, расстояния между линиями. 1 рубль

Опыт 4. В центре вертушки закреплена стрелка, которая раскручивается и останавливается в случайном положении. С какой вероятностью стрелка вертушки остановится на зеленом секторе? Для решения этой задачи можно вычислить площадь зеленных секторов и разделить ее на площадь всего круга:

Вывод. Изучив литературу, мы пришли к выводу, что наше предположение верно, т. е. дали верное геометрическое определение вероятности.

Решение тренировочных задач. Задачи 1 – 3.

Задача 1. Дано: АВ=12см, АМ=2см, МС=4см. На отрезке АВ случайным образом отмечается точка Х. Какова вероятность того, что точка Х попадет на отрезок: 1) АМ; 2) АС; 3)МС; 4) МВ; 5) АВ? Решение. 1)A={точка Х попадает на отрезок АМ}, АМ=2см, АВ=12см, 2) В ={точка Х попадает на отрезок АС}, АС=2см+4см=6см, 3) С ={точка Х попадает на отрезок МС}, МС=4см, АВ=12см, 4) D={точка Х попадает на отрезок МВ}, МВ=12см–2см=10см, 5) Е={точка Х попадает на отрезок АВ}, А М С В

Задача 2. Оконная решетка состоит из клеток со стороной 20см. Какова вероятность того, что попавший в окно мяч, пролетит через решетку, не задев ее, если радиус мяча равен: а) 10см, б) 5см? Решение. а) б)

Задача 3. Оконная решетка состоит из клеток со стороной 20см. В решетку 100 раз бросили наугад один и тот же мяч. В 50 случаях он пролетел через решетку не задев ее. Оцените приближенно радиус мяча. Решение.

Итог. Вопросы. Задача.

Вопросы: 1.Что такое геометрическая вероятность? Каковы формулы геометрической вероятности (на плоскости, на прямой, в пространстве)? 2.Можно ли вычислить геометрические вероятности для опыта, исходы которого не являются равновозможными?

Задача. Внутри квадрата со стороной 10см выделен круг радиусом 2см. Случайным образом внутри квадрата отмечается точка. Какова вероятность того, что она попадет в выделенный круг? А