Презентация по алгебре. Магический квадрат. Выполнила ученица 8 Б класса Беспалова Оля.

Презентация:



Advertisements
Похожие презентации
Магические квадраты Работу выполнил ученик 7 д класса Ондар Монге Учитель :Леонтьева Е.И.
Advertisements

Магические квадраты Ученицы 9 «А» класса Средней школы 1980 Г. Москвы Поляковой Анны.
Презентацию выполнили: сув. Рыбин и сув. Дробуш 8 класс (3 взвод 1 роты)
Магический квадрат Общие сведения. Маги́ческий, или волше́бный квадра́т это квадратная таблица, заполненная n^2 числами, таким образом, что сумма чисел.
Квадрат разделен на 9 равных клеток. Расставьте в этих клетках числа 1, 2, 3, 4, 5, 6, 7, 8, 9 так, чтобы сумма чисел в каждой строке и в каждом столбике.
Магические квадраты! Расположение чисел. Работу выполнила ученица 8а класса Шолохова Анна Руководитель Анохина М.Н.
МАГИЧЕСКИЕ И ЛАТИНСКИЕ КВАДРАТЫ Хекало Хекало Владислав 5 Г класс Владислав 5 Г класс МОУ МОУ СОШ 1 г.Пугачев.
МАГИЧЕСКИЙ КВАДРАТ Ученица 7а класса Шахова Анна.
Магические квадраты Работа ученика 6б класса Музаева Георгия.
Решение магических квадратов Козачук Алексей Алексеевич МОУ ДОД «Детско-юношеский центр «Спектр» Объединение «Компьютерная графика» Для воспроизведения.
Мы решили узнать, что такое магический квадрат и какова история его возникновения.
Математика на шахматной доске. "В шахматах я ценю прежде всего логику" Т.Петросян (9-й чемпион мира) Задачи, связанные с шахматами, часто встречаются.
ФРОЛОВА ЕЛЕНА НИКОЛАЕВНА, УЧИТЕЛЬ ИНФОРМАТИКИ. Проблема исследования : поиск общих способов построения магических квадратов Тема исследования: заполнение.
Математика на шахматной доске Выполнил: ученик 10 «Б» класса Чащин Артём Валерьевич Научный руководитель: учитель математики Косарева Галина Николаевна.
Магический квадрат Какие квадраты называют магическими и почему. Исследования провела Ничутина Екатерина, Ничутина Екатерина, ученица 6 класса. ученица.
Школьная научно-практическая конференция «Шаг в будущее» «Магические квадраты» «Магические квадраты»
МАГИЧЕСКИЕ КВАДРАТЫ – магия или наука Приданникова Ольга Геннадьевна, учитель математики МАОУ «СОШ 1» города Соликамска.
У семи лиц по семь кошек, каждая кошка съедает по семь мышей, каждая мышь съедает по семь колосьев, из каждого колоса может вырасти по семь мер ячменя.
Презентацию на тему:«Волшебный квадрат» подготовила ученица 9 класса МОУ СОШ п.Красноозёрный, Дергачёвский район, Саратовская область Топенева Альбина.
1 2. Матрицы. 2.1 Матрицы и их виды. Действия над матрицами. Джеймс Джозеф Сильвестр.
Транксрипт:

Презентация по алгебре. Магический квадрат. Выполнила ученица 8 Б класса Беспалова Оля.

МАГИЧЕСКИЙ КВАДРАТ. МАГИЧЕСКИЙ КВАДРАТ, квадратная таблица из целых чисел, в которой суммы чисел вдоль любой строки, любого столбца и любой из двух главных диагоналей равны одному и тому же числу.

Легенда появления магического квадрата. Магический квадрат – древнекитайского происхождения. Согласно легенде, во времена правления императора Ю (ок до н.э.) из вод Хуанхэ (Желтой реки) всплыла священная черепаха, на панцире которой были начертаны таинственные иероглифы (рис. а), и эти знаки известны под названием ло-шу и равносильны магическому квадрату, изображенному на рис. б. В 11 в. о магических квадратах узнали в Индии, а затем в Японии, где в 16 в. магическим квадратам была посвящена обширная литература. Европейцев с магическими квадратами познакомил в 15 в. византийский писатель Э.Мосхопулос.

Магический квадрат Ян Хуэя. В 13 в. математик Ян Хуэй занялся проблемой методов построения магических квадратов. Его исследования были потом продолжены другими китайскими математиками. Ян Хуэй рассматривал магические квадраты не только третьего, но и больших порядков. Некоторые из его квадратов были достаточно сложны, однако он всегда давал правила для их построения. Он сумел построить магический квадрат шестого порядка, причем последний оказался почти ассоциативным (в нем только две пары центрально противолежащих чисел не дают сумму 37)

Квадрат А.Дюрера. Магический квадрат 4×4, изображённый на гравюре Альбрехта Дюрера«Меланхолия I», считается самым ранним в европейском искусстве. Два средних числа в нижнем ряду указывают дату создания картины (1514). Сумма чисел на любой горизонтали, вертикали и диагонали равна 34. Эта сумма также встречается во всех угловых квадратах 2×2, в центральном квадрате ( ), в квадрате из угловых клеток ( ), в квадратах, построенных «ходом коня» ( и ), в прямоугольниках, образованных парами средних клеток на противоположных сторонах ( и ).

Формула магического квадрата. В 19 и 20 вв. интерес к магическим квадратам вспыхнул с новой силой. Их стали исследовать с помощью методов высшей алгебры и операционного исчисления. Каждый элемент магического квадрата называется клеткой. Квадрат, сторона которого состоит из n клеток, содержит n² клеток и называется квадратом n-го порядка. В большинстве магических квадратов используются первые n последовательных натуральных чисел. Сумма M чисел, стоящих в каждой строке, каждом столбце и на любой диагонали, называется постоянной квадрата и равна.Доказано, что n 3. Для квадрата 3-го порядка S = 15, 4-го порядка – S = 34, 5-го порядка – S = 65.

МЕТОД ДЕ ЛА ИРА. Метод Де Ла Ира (1640–1718) основан на двух первоначальных квадратах. На рисунке показано, как с помощью этого метода строится квадрат 5-го порядка. В клетку первого квадрата вписываются числа от 1 до 5 так, что число 3 повторяется в клетках главной диагонали, идущей вправо вверх, и ни одно число не встречается дважды в одной строке или в одном столбце. То же самое мы проделываем с числами 0, 5, 10, 15, 20 с той лишь разницей, что число 10 теперь повторяется в клетках главной диагонали, идущей сверху вниз (рис. б). Поклеточная сумма этих двух квадратов (рис. в) образует магический квадрат. Этот метод используется и при построении квадратов четного порядка.

Построение магических квадратов Метод террас Для заданного нечетного N начертим квадратную таблицу размером NxN. Пристроим к этой таблице со всех четырех сторон террасы (пирамидки). В результате получим ступенчатую симметричную фигуру. Начиная с левой вершины ступенчатой фигуры, заполним ее диагональные ряды последовательными натуральными числами от 1 до N². После этого для получения классической матрицы N-го порядка числа, находящиеся в террасах, поставим на те места таблицы размером NxN, в которых они оказались бы, если перемещать их вместе с террасами до того момента, пока основания террас не примкнут к противоположной стороне таблицы.