Электрический ток в металлах Надежда Далецкая 11а.

Презентация:



Advertisements
Похожие презентации
Подготовила ученица 11-Б класса 0Ш4. Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают,
Advertisements

Электрический ток в металлах. Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают,
Электрический ток в металлах МКОУ средняя общеобразовательная школа п. Заря Опаринского района Кировской области.
Сверхпроводимость металлов и сплавов У многих металлов и сплавов при температурах, близких с T=0 К, наблюдается резкое уменьшение удельного сопротивления.
Электрический ток в металлах – это упорядоченное движение свободных электронов под действием электрического поля. Пауль Друде Карл Людвиг немецкий физик.
Электрический ток в металлах Презентацию подготовили ученики 10 б класса Коваленко Виктор и Бялковский Владислав.
Извилистая история исследования электрических свойств самых различных сред, когда трудно было признавать, что токи, текущие по металлическому проводу и.
Сверхпроводимость; Температурный коэффициент сопротивления; Электронная теория проводимости металлов.
Электрическая цепь. Электрический ток в металлах и электролитах Выполнила учитель физики Шаповалова Жанна Владимировна.
ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ Подготовила : ученица 11 Б класса Бакалым Ангелина.
«Электрический ток в различных средах» Выполнили: Кирдеева Е.С. Пасик А.И., ученики 10 класса А МОУ СОШ 31 Г.Иркутска, 2010 год.
Электрофизические свойства проводниковых материалов Автор Останин Б.П. Эл. физ. свойства проводниковых материалов. Слайд 1. Всего 12 Конец слайда.
Сверхпроводимость Высокотемпературная проводимость.
Выполнил Базанов. Начнем с металлических проводников. Вольт - амперная характеристика этих проводников нам известна, но пока ничего не говорилось о её.
Электрический ток в различных средах.. Электрический ток в металлах.
Электрический ток в металлах. Действия электрического тока.
Сверхпроводники́ -вещества, переходящие в сверхпроводящее состояние при температурах ниже критической (Тк). Сверхпроводимость свойство некоторых материалов.
Сверхпроводимость Выполнил ученик 10«Б» класса Митягин Сергей.
Подготовил ученик 10 класса Мельник Валерий. ЭЛЕКТРИЧЕСКИЙ ТОК ПРОВОДЯТ ТВЕРДЫЕ, ЖИДКИЕ И ГАЗООБРАЗНЫЕ ТЕЛА. ПЕРЕДАЧУ ЭЛЕКТРОЭНЕРГИИ ОТ ИСТОЧНИКОВ ТОКА.
Сверхпроводимость Презентация по теме:. Сверхпроводимость, свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает.
Транксрипт:

Электрический ток в металлах Надежда Далецкая 11а

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда. Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Опыт Э.Рикке В этих опытах электрический ток пропускали в течении года через три прижатых друг к другу, хорошо отшлифованных цилиндра - медный, алюминевый и снова медный. Общий заряд, прошедший за это время через цилиндры, был очень велик (около 3,5*106 Кл). После окончания было установлено, что имеются лишь незначительные следы взаимного проникновения металлов, которые не превышают результатов обычной диффузии атомов в твёрдых телах. Измерения, проведённые с высокой степенью точности, показали, что масса каждого из цилиндров осталась неизменной. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то масса цилиндров должна была бы заметно измениться, если бы носителями заряда были ионы. В этих опытах электрический ток пропускали в течении года через три прижатых друг к другу, хорошо отшлифованных цилиндра - медный, алюминевый и снова медный. Общий заряд, прошедший за это время через цилиндры, был очень велик (около 3,5*106 Кл). После окончания было установлено, что имеются лишь незначительные следы взаимного проникновения металлов, которые не превышают результатов обычной диффузии атомов в твёрдых телах. Измерения, проведённые с высокой степенью точности, показали, что масса каждого из цилиндров осталась неизменной. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то масса цилиндров должна была бы заметно измениться, если бы носителями заряда были ионы. Следовательно, свободными носителями заряда в металлах являются не ионы. Огромный заряд, который прошёл через цилиндры, был перенесён, очевидно, такими частицами, которые одинаковы и в меди, и в алюминии. Как известно, такие частицы входят в состав атомов всех веществ - это электроны. Естественно предположить, что ток в металлах осуществляют именно свободные электроны. Следовательно, свободными носителями заряда в металлах являются не ионы. Огромный заряд, который прошёл через цилиндры, был перенесён, очевидно, такими частицами, которые одинаковы и в меди, и в алюминии. Как известно, такие частицы входят в состав атомов всех веществ - это электроны. Естественно предположить, что ток в металлах осуществляют именно свободные электроны.

Опыт Т.Стюарта и Р.Толмена Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.

Т.Стюарт и Р.Толмен определили экспериментально удельный заряд частиц. Он оказался равным Т.Стюарт и Р.Толмен определили экспериментально удельный заряд частиц. Он оказался равным

В начале 20 века немецкий физик П. Друде и голландский физик Х.Лоренц создали классическую теорию электропроводности металлов. В начале 20 века немецкий физик П. Друде и голландский физик Х.Лоренц создали классическую теорию электропроводности металлов.

Основные положения теории: 1. Хорошая проводимость металлов объясняется наличием в них большого числа электронов. 2. Под действием внешнего электрического поля на беспорядочное движение электронов накладывается упорядоченное движение, т.е. возникает ток.

3. Сила электрического, тока идущего по металлическому проводнику равна:

4. Так как внутреннее строение у разных веществ различное, то и сопротивление тоже будет различным. 4. Так как внутреннее строение у разных веществ различное, то и сопротивление тоже будет различным. 5. При увеличении хаотического движения частиц вещества происходит нагревание тела, т.е. выделение тепла. Закон Джоуля-Ленца: 5. При увеличении хаотического движения частиц вещества происходит нагревание тела, т.е. выделение тепла. Закон Джоуля-Ленца:

6. У всех металлов с увеличением температуры растет и сопротивление. 6. У всех металлов с увеличением температуры растет и сопротивление. где a - температурный коэффициент; – удельное сопротивление и сопротивление металлического проводника; и R – удельное сопротивление проводника и сопротивление проводника при температуре t. где a - температурный коэффициент; – удельное сопротивление и сопротивление металлического проводника; и R – удельное сопротивление проводника и сопротивление проводника при температуре t.

Сверхпроводимость металлов и сплавов У многих металлов и сплавов при температурах, близких с T=0 К, наблюдается резкое уменьшение удельного сопротивления – это явление называется сверхпроводимостью металлов. У многих металлов и сплавов при температурах, близких с T=0 К, наблюдается резкое уменьшение удельного сопротивления – это явление называется сверхпроводимостью металлов. Оно было обнаружено голландским физиком Х.Камерлингом – Онессом в 1911 году у ртути ( Т кр =4,2 о К ). Т P 0

Теория сверхпроводимости была создана лишь в 1957 году американцами Л.Купером, Дж. Бардином и Дж. Шриффером. Они считали, что сверх проводимость – это сверхтекучесть электронной жидкости. Теория сверхпроводимости была создана лишь в 1957 году американцами Л.Купером, Дж. Бардином и Дж. Шриффером. Они считали, что сверх проводимость – это сверхтекучесть электронной жидкости.

Область применения: получение сильных магнитных полей; получение сильных магнитных полей; мощные электромагниты со сверхпроводящей обмоткой в ускорителях и генераторах. мощные электромагниты со сверхпроводящей обмоткой в ускорителях и генераторах. В настоящий момент в энергетике существует большая проблема В настоящий момент в энергетике существует большая проблема - большие потери электроэнергии при передаче ее по проводам. - большие потери электроэнергии при передаче ее по проводам. Возможное решение проблемы: Возможное решение проблемы: при сверхпроводимости сопротивление проводников приблизительно равно 0 при сверхпроводимости сопротивление проводников приблизительно равно 0 и потери энергии резко уменьшаются. и потери энергии резко уменьшаются.

Общие сведения Свойством сверхпроводимости обладают около половины металлов и несколько сотен сплавов. Свойством сверхпроводимости обладают около половины металлов и несколько сотен сплавов. Сверхпроводящие свойства зависят от типа кристаллической структуры. Изменение её может перевести вещество из обычного в сверхпроводящее состояние. Сверхпроводящие свойства зависят от типа кристаллической структуры. Изменение её может перевести вещество из обычного в сверхпроводящее состояние. Критические температуры изотопов элементов, переходящих в сверхпроводящее состояние, связаны с массами изотопов соотношением: Критические температуры изотопов элементов, переходящих в сверхпроводящее состояние, связаны с массами изотопов соотношением: Т э (М э ) 1/2 = const (изотопический эффект) Т э (М э ) 1/2 = const (изотопический эффект) Сильное магнитное поле разрушает эффект сверхпроводимости. Следовательно, при помещении в магнитное поле свойство сверхпроводимости может исчезнуть.