Руководитель проекта: Мешулина Л.Б., учитель математики МОУ «Андреевская средняя общеобразовательная школа» Судогодского района, Владимирской области.

Презентация:



Advertisements
Похожие презентации
Теорема Пифагора. Пифагор Самосский Открытия пифагорейцев Пифагорейцами было сделано много важных открытий в арифметике и геометрии, в том числе:теорема.
Advertisements

Теорема Пифагора 8 класс (ок. 580 – ок. 500 г. до н.э.) Пребудет вечной истина, как скоро Ее познает слабый человек! И ныне теорема Пифагора Верна, как.
Теорема Пифагора. Треугольники имеющие стороны: 3, 4, 5 6, 8, 10 5, 12, 13 прямоугольные.
Теорема Пифагора. Цель урока: Изучить одну из основных теорем геометрии, познакомиться с основными этапами жизни и деятельности Пифагора.
Решение задач на применение теоремы Пифагора Автор: Рычкова Валентина Геннадьевна, учитель математики учитель математики СОУ «Свердловская СОШ» СОУ «Свердловская.
«Да, путь познания не гладок. Но знаем мы со школьных лет, Загадок больше, чем разгадок, И поискам предела нет!»
«Геометрия владеет двумя сокровищами: одно из них – это теорема Пифагора» Иоганн Кеплер.
Да, путь познания не гладок. Но знаем мы со школьных лет, Загадок больше, чем разгадок, И поискам предела нет!
Теорема Пифагора Задача А С В 7 5 cos A = ? Задача N M P 15 7 cos P = ?
ИСТОРИЧЕСКИЕ ЗАДАЧИ и не только Применение теоремы Пифагора.
Презентация разработана с целью применения на уроке геометрии в 8 классе для изучения нового материала по теме: «Теорема Пифагора». Выполнила учитель.
ЗАДАЧИ: Задача индийского математика XII века Бхаскары ТЕОРЕМАПИФАГОРАТЕОРЕМАПИФАГОРА На берегу реки рос тополь одинокий. Вдруг ветра порыв его ствол надломал.
Кроссворд Вопросы: 1.Равенство двух отношений. 2.Отрезок, соединяющий вершину треугольника с серединой противоположной стороны. 3.Древнегреческий учёный,
Теорема Пифагора 8 класс Задача Задача Задача.
«Да, путь познания не гладок. Но знаем мы со школьных лет, Загадок больше, чем разгадок, И поискам предела нет!» 1.
МОУ "Ирбитская средняя общеобразовательная школа 18" Теорема Пифагора МОУ «Ирбитская средняя общеобразовательная школа 18» Учитель математики В.А. Тихонова.
Теорема Пифагора
Теорема Пифагора 8 класс Автор: Перекрест Н.Н. МБОУ ЮСОШ 6.
Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum - ослиный мост, или elefuga - бегство « убогих.
Урок геометрии по теореме Пифагора Трофимова Людмила Викторовна учитель математики Сиверская гимназия 1.
Транксрипт:

Руководитель проекта: Мешулина Л.Б., учитель математики МОУ «Андреевская средняя общеобразовательная школа» Судогодского района, Владимирской области Теорема Пифагора 8 класс

(ок. 580 – ок. 500 г. до н.э.) Пифагор Самосский

Открытия пифагорейцев Пифагорейцами было сделано много важных открытий в арифметике и геометрии, в том числе: теорема о сумме внутренних углов треугольника; построение правильных многоугольников и деление плоскости на некоторые из них; геометрические способы решения квадратных уравнений; деление чисел на чётные и нечётные, простые и составные; введение фигурных, совершенных и дружественных чисел; доказательство того, что корень из 2 не является рациональным числом; создание математической теории музыки, учения об арифметических, геометрических и гармонических пропорциях и многое другое.

c 2 = a 2 + b 2 В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.

c 2 = a 2 + b 2 Евклид: «В прямоугольном треугольнике квадрат, натянутый над прямым углом, равен квадратам на сторонах, заключающих прямой угол»

Смотри! a b b a b bb b b a aa c c c c c a² b² c²

Теорема Пифагора : c 2 = a 2 + b 2 b a b b b a a a c c c c S = 4·½·ab + c² = 2ab + c² S = (a + b)² = a² + b² +2ab a² + b² = c² c²

Если дан нам треугольник, И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдём: Катеты в квадрат возводим, Сумму степеней находим – И таким простым путём К результату мы придём. Теорема в стихах

Пифагоровы штаны во все стороны равны

Шаржи

Сонет Шамиссо Пребудет вечной истина, как скоро Её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далекий век. Обильно было жертвоприношенье Богам от Пифагора. Сто быков Он отдал на закланье и сожженье За света луч, пришедший с облаков. Поэтому всегда с тех самых пор, Чуть истина рождается на свет Быки ревут, её почуя, вслед. Они не в силах свету помешать, А могут лишь закрыв глаза дрожать От страха, что вселил в них Пифагор.

Натягиаватели веревок Гарпедонапты, или «натягиватели веревок», строили прямые углы при помощи прямоугольных треугольников со сторонами 3,4 и 5. Они брали веревку длиною в 12 м и привязывали по цветной полоске на расстоянии 3м от одного конца и 4м от другого конца. Прямой угол окажется заключенным между сторонами 3м и 4м.

Задача индийского математика XII века Бхаскары «На берегу реки рос тополь одинокий. Вдруг ветра порыв его ствол надломал. Бедный тополь упал. И угол прямой С теченьем реки его ствол составлял. Запомни теперь, что в этом месте река В четыре лишь фута была широка. Верхушка склонилась у края реки. Осталось три фута всего от ствола, Прошу тебя, скоро теперь мне скажи: У тополя как велика высота?»

Задача из китайской «Математики в девяти книгах» « Имеется водоем со стороной в 1 чжан = 10 чи. В центре его растет камыш, который выступает над водой на 1 чи. Если потянуть камыш к берегу, то он как раз коснётся его. Спрашивается: какова глубина воды и какова длина камыша?»

Задача из учебника «Арифметика» Леонтия Магницкого «Случися некому человеку к стене лестницу прибрати, стены же тоя высота есть 117 стоп. И обрете лестницу долготью 125 стоп. И ведати хочет, колико стоп сея лестницы нижний конец от стены отстояти имать».

Задача Для крепления мачты нужно установить 4 троса. Один конец каждого троса должен крепиться на высоте 12 м, другой на земле на расстоянии 5 м от мачты. Хватит ли 50 м троса для крепления мачты?