Признаки равенства треугольников Урок в 7 классе Г Учитель Мошнина Ирина Владимировна.

Презентация:



Advertisements
Похожие презентации
Тема: Признаки равенства прямоугольных треугольников Цель: Создание условий для ознакомления с доказательством признаков равенства прямоугольных треугольников.
Advertisements

Исследование треугольников Учитель : Кириллова А.Н.
Геометрия полна приключе- ний, потому что за каждой за- дачей скрывается приключение мысли. Решить задачу – это значит пережить приключение.
Три точки соединенные тремя отрезками образуют фигуру, называемую треугольником.
Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется Отрезок, соединяющий вершину треугольника с серединой противоположной.
Медианы, биссектрисы и высоты треугольника. МЕДИАНА Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой.
Геометрия Подготовила: Усманова Мадина ученица 7 «В» класса.
По сторонам: 1.Разносторонний 2.Равносторонний 3.Равнобедренный По углам: 1.Остроугольный 2.Прямоугольный 3.Тупоугольный.
Презентация к исследовательской работе. Три признака равенства треугольников Подготовила ученица 10 класса СОШ 19 г. Тимашевска Коваленко Елена. Руководитель:
Повторение главы «Треугольники» МОУ Халдинская средняя общеобразовательная школа Селтинского района Удмуртской Республики Учитель:Эсенбаева Ольга Александровна.
Мы изучили треугольники!. Геометрия (наука, изучающая геометрические фигуры) Стереометрия (наука изучающая свойства фигур в пространстве) Планиметрия.
Треугольники. Основные понятия темы: Треугольник и его элементы. Равные треугольники. Виды треугольников. Медиана. Биссектриса. Высота.
Работу выполнила: ученица 7 класса МБОУ Сарасинской СОШ Алтайского района Дьяченко Татьяна Учитель: Мордовских Надежда Васильевна МБОУ Сарасинская СОШ.
Треугольники Треугольники Выполнила Ибраимова Акмарал Ученица 7«Б» класса.
Треугольником называется фигура, состоящая из трех точек, не лежащих на одной прямой, трех отрезков, соединяющих эти точки, а также части плоскости, ограниченной.
Треугольники 1.Треугольник. 2.Виды треугольников. 3.Основные линии в треугольнике. 4.Признаки равенства треугольников. 5.Сумма углов треугольника. 6.Внешние.
Треугольник
Медиана, биссектриса, высота треугольника. Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Конкурс «Лучший следопыт» в области геометрии.. Тема урока : «Решение задач» Цель урока: Повторить теоретический материал и применить полученные знания.
Треугольник.Треугольник.. Отметим какие- нибудь 3 точки, не лежащие на одной прямой, и соединим их отрезками(рис.1а).Мы получим геометрическую фигуру,
Транксрипт:

Признаки равенства треугольников Урок в 7 классе Г Учитель Мошнина Ирина Владимировна

Треугольник Треугольник - простейшая плоская фигура. Три вершины и три стороны. Изучение треугольника породило науку – тригонометрию. Эта наука возникла из практических потребностей при измерении земельных участков, составлении карт на местности, конструировании машин и механизмов.

Первое упоминание о треугольнике и его свойствах мы находим в египетских папирусах Которым более 4000лет.Через 2000лет в древней Греции

Виды треугольников

А также равносторонний и равнобедренный треугольник

Медиана треугольника Отрезок соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника. Любой треугольник имеет три медианы

Высота треугольника Перпендикуляр проведенный из вершины треугольника к прямой, содержащей противоположную. Сторону, называется высотой треугольника Любой треугольник имеет три высоты

Биссектриса треугольника Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется биссектрисой треугольника Любой треугольник имеет три биссектрисы

Свойство медиан, биссектрис и высот треугольников.

Открытия в геометрии треугольника есть и в нашем веке Так, в 1904 году американский математик Ф.Морли доказал, что если из каждой вершины треугольника провести лучи, делящие соответствующий угол на три равные части(трисектрисы угла,) то точки пересечения смежных трисектрис углов являются вершинами равностороннего треугольника. Доказательство этого утверждения было под силу и древнегреческим математикам, но они прошли мимо этого факта, видимо, потому, что тогда было принято рассматривать лишь построения при помощи циркуля и линейки, а с помощью этих инструментов такое деление сделать не возможно.

Трисектрисы угла

А вот и сами три признака 1 признак Если две стороны и угол между ними одного треугольника, соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

2-й признак Если сторона и два прилежащих угла одного треугольника соответственно равны стороне и двум прилежащим углам другого треугольника, то такие треугольники равны.

3-й признак Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника. То такие треугольники равны.

Решение задач Желаем удачи! Признаки