С точки зрения теории вероятностей. Парадо́кс дней рожде́ния утверждение, гласящее, что если дана группа из 23 или более человек, то вероятность того,

Презентация:



Advertisements
Похожие презентации
Методы и приемы решения ЕГЭ заданий типа С6 по математике методические рекомендации Серебряков И.П., учитель математики МБОУ «Лицей» г.Лесосибирск.
Advertisements

Тема 5 Дискретные случайные величины. Закон распределения. Виды дискретных распределений План: 1. Понятие случайной величины и ее виды. 2. Закон распределения.
Гауссова кривая Закон больших чисел Выполнила: Ромашева Мария, ученица 11Б класса МОУ «Гимназия 11»
Метод тригонометрических подстановок Презентацию выполнил: Ведин Артём.
Принцип Дирихле Работу выполнил ученик 6 «А» класса Клишин Антон.
Найдем вероятность попадания в интервал (x, x + x): P(x X x + x)=F(x + x) - F(x) F(x). § 6. Непрерывная случайная величина. Функция плотности. Пусть X.
Работу выполнил ученик 11 класс Соломин Вячеслав.
Функция Ляпунова для моделей химической кинетики.
Оператор множественного выбора CASEОператор множественного выбора CASE.
Матрицы Элементарные преобразования и действия над матрицами made by aspirin.
Ст. преп., к.ф.м.н. Богданов Олег Викторович 2010 Элементы теории вероятности.
Тригонометрические уравнения.. Цели проекта: систематизировать информацию по теме; преподнести её на доступном языке; создать тренажеры с самопроверкой.
Введение в теорию вероятности. Эксперимент Монета ПопытокРешка Кнопка Попыток Острие вверх.
Атака «Дней рождения» Подготовил: Самойленко Илья 4 курс 9 группа.
Рис.1. Прибор обслуживания заявок Рассмотрим поток, в котором события разделены интервалами времени τ 1,τ 2 … которые вообще являются случайными величинами.
Элементы теории вероятностей По материалам учебника Гнеденко Б.В. «Курс теории вероятностей», 7-е издание, 2001.
Известно, что приведенном квадратном уравнении произведение корней равно третьему коэффициенту, а сумма корней – второму коэффициенту, взятому противоположным.
Расчет погрешностей косвенных измерений Канд. физ.-мат.наук, Марчук Э.В.
Теория вероятностей и математическая статистика Лекция 1. Введение. Основные понятия теории вероятностей. Элементы комбинаторики.
Вычисление производных (численное дифференцирование)
Транксрипт:

С точки зрения теории вероятностей

Парадо́кс дней рожде́ния утверждение, гласящее, что если дана группа из 23 или более человек, то вероятность того, что хотя бы у двух из них дни рождения (число и месяц) совпадут, превышает 50 %. Для группы из 60 или более человек вероятность совпадения дней рождения хотя бы у двух её членов составляет более 99 %, хотя 100 % она достигает, только когда в группе не менее 366 человек (с учётом високосных лет 367).

Ключевым моментом здесь является то, что утверждение парадокса дней рождения говорит именно о совпадении дней рождения у каких-либо двух членов группы. Одно из распространённых заблуждений состоит в том, что этот случай путают с другим похожим, на первый взгляд, случаем, когда из группы выбирается один человек и оценивается вероятность того, что у кого-либо из других членов группы день рождения совпадёт с днем рождения выбранного человека. В последнем случае вероятность совпадения значительно ниже.

Рассчитаем сначала, какова вероятность p (n) того, что в группе из n человек дни рождения всех людей будут различными. Если n > 365, то в силу принципа Дирихле вероятность равна нулю. Если же n 365, то будем рассуждать следующим образом. Возьмём наугад одного человека из группы и запомним его день рождения. Затем возьмём наугад второго человека, при этом вероятность того, что у него день рождения не совпадёт с днем рождения первого человека, равна 1 1/365. Затем возьмём третьего человека, при этом вероятность того, что его день рождения не совпадёт с днями рождения первых двух, равна 1 2/365. Рассуждая по аналогии, мы дойдём до последнего человека, для которого вероятность несовпадения его дня рождения со всеми предыдущими будет равна 1 (n 1)/365. Перемножая все эти вероятности, получаем вероятность того, что все дни рождения в группе будут различными:

Тогда вероятность того, что хотя бы у двух человек из n дни рождения совпадут, равна

Значение этой функции превосходит 1/2 при n = 23 (при этом вероятность совпадения равна примерно 50.7 %). Вероятности для некоторых значений n иллюстрируются следующей таблицей:

Вероятность совпадения дней рождения в группе можно также рассчитать с использованием формул комбигаторики. Представим, что каждый день года это одна буква в алфавите из 365 букв. Дни рождения n человек могут быть представлены строкой, состоящей из n букв такого алфавита. Общее число таких строк равно Общее число строк, в которых буквы не повторяются, составит

Тогда, если строки выбираются случайно (с равномерным распределением), то вероятность выбрать строку, в которой хотя бы две буквы совпадут, равна для n 365 и p (n) = 1 для n > 365. Поскольку то это выражение эквивалентно представленному выше.

Интересно сравнить вероятность p (n) с вероятностью того, что в группе из n человек у кого-либо день рождения совпадет с днём рождения некоторого заранее выбранного человека (не принадлежащего к этой группе). Эта вероятность равна: Подставляя n = 23, получаем q (n) примерно 5.9 %, что лишь немногим лучше одного шанса из 17. Для того, чтобы вероятность совпадения дня рождения с заданным человеком превысила 50 %, число людей в группе должно быть не менее 253. Это число заметно больше, чем половина дней в году (365/2 = 182.5); так происходит из-за того, что у остальных членов группы дни рождения могут совпадать между собой, и это уменьшает вероятность совпадения одного из них с днём рождения заданного человека.

Таким образом, вероятность того, что даже в группе из 7 людей дни рождения хотя бы у двух будут различаться не более чем на неделю, превышает 50 %.

Спасибо за внимание