МОУ « Средняя школа 30» Презентация по алгебре на тему: «Понятие функции». Выполнила: ученица 11 класса Д Красовская Виктория Руководители: Крагель Т.П.,

Презентация:



Advertisements
Похожие презентации
Ашық сабақтар Презентация по алгебре на тему: «Понятие функции».
Advertisements

Презентация на тему: «Понятие функции».. Содержание: что такое функция что такое функция история создания названия функции история создания названия функции.
Числовой функцией называется соответствие (зависимость), при котором каждому значению одной переменной сопоставляется по некоторому правилу единственное.
Что такое функция? Функциональная зависимость, или функция, - это такая зависимость между двумя переменными, при которой каждому значению независимой переменной.
Что называется функцией? Если каждому значению переменной Х из некоторого множества D соответствует единственное значение переменной У, то такое.
Функция
Функция. Свойства функции.. Числовой функцией называется соответствие ( зависимость ), при котором каждому значению одной переменной сопоставляется по.
Числовые функцииЧисловые функции 9 класс 9 класс В реальной жизни мы говорим: «каковы мои функции» или «каковы мои функциональные обязанности», подразумевая.
Функции и их свойства Автор: Семенова Елена Юрьевна y y = f(x) 0 x МОУ СОШ 5 – «Школа здоровья и развития» г. Радужный.
Функция. Свойства функции. Автор Шишкова Елена Ивановна ГБОУ СОШ "Школа здоровья" №1115 г.Москвы
у х 01 1 у = х у = - х у = 3х у = 2х у = 0,5х k >0 k < 0 x 0 y0.
Вопросы: 1. Независимая переменная (х) 2. Наглядный способ задания функции (графический) 3. График четной функции симметричен относительно чего (Оу) 4.
Презентация к уроку по алгебре по теме: Функции, их свойства. Чтение графиков функций
Определение числовой функции и способы её задания.
Свойства функций Демонстрационный материал. Четная функция у х y=f(x) График четной функции симметричен относительно оси ОУ Функция у=f(x) называется.
Исследование тригонометрических функций
Свойства функций Область определения, множество значений, четность, нечетность, периодичность.
Шишкова Елена Ивановна ГБОУ СОШ «Школа здоровья» 1115 г.Москвы Функция. Свойства функции.
Графическое исследование тригонометрических функций.
Свойства функции. Алгебра и начала анализа, 10 класс. Воробьев Леонид Альбертович, г.Минск.
Транксрипт:

МОУ « Средняя школа 30» Презентация по алгебре на тему: «Понятие функции». Выполнила: ученица 11 класса Д Красовская Виктория Руководители: Крагель Т.П., Гремяченская Т.В. г. Старый Оскол 2006г.

Содержание: что такое функция что такое функция история создания названия функции история создания названия функции аналитический способ задания функции аналитический способ задания функции табличный способ задания функции табличный способ задания функции способ описания функции способ описания функции графический способ задания функции графический способ задания функции область определения функции область определения функции область значения функции область значения функции четность нечетность функции четность нечетность функции возрастание и убывание функции возрастание и убывание функции точки минимума и максимума функции точки минимума и максимума функции

Что такое функция Что такое функция Две переменные величины Х и Y связаны функциональной зависимостью, если каждому значению, которое может принимать переменная Х, соответствует одно и только одно значение переменной Y. Переменная Х называется независимой переменной или аргументом функции, а переменная Y – зависимой переменной или функцией. Записывают соотношение между Х и Y в общем виде так: y=f(x) или y=y(x)

Термин функция впервые появился в 1692 году у Лейбница и употреблялся в узком смысле (различные отрезки, связанные с кривой – например, абсциссы её точки). Современное понятие функции, как выражения зависимости одних переменных величин от других сформировалось в первой половине 19 века благодаря исследованиям таких крупных математиков, как Лобачевский, Дирихле, Фурье. Одним из важнейших достижений в области математического анализа в 19 веке стало рождение теории аналитических функций (Огюсте Коши) и функции комплексного переменного. История создания названия функции Г.В.Лейбниц

Аналитический способ задания функций Функция задается формулой, позволяющей Функция задается формулой, позволяющей получить значение зависимой переменной (Y),подставив конкретное числовое значение аргумента (Х). Если произвольное двузначное число обозначить буквой Х, а соответствующий ему квадрат числа – буквой Y, то эту функцию можно задать формулой Y=Х², где Х – двузначное число. Значения переменной Y зависят от значения переменной Х, в то время как значения Х являются независимыми. Поэтому переменную Х называют независимой переменной, а Y – зависимой переменной. Независимую переменную называют также аргументом, а зависимую – функцией. П РИМЕР 1 : Y=X²

Табличный способ задания функции При этом способе задания функции заполняется таблица, в верхней строке которой значения независимой переменной (Х), в нижней – соответствующие значения зависимой переменной (Y). При этом способе задания функции заполняется таблица, в верхней строке которой значения независимой переменной (Х), в нижней – соответствующие значения зависимой переменной (Y). Таблицы значений чаще составляют для построения графиков функций, заданных формулами. При этом для нескольких, произвольно выбранных, значений независимой переменной вычисляют соответствующие значения зависимой переменной. Таблицы значений чаще составляют для построения графиков функций, заданных формулами. При этом для нескольких, произвольно выбранных, значений независимой переменной вычисляют соответствующие значения зависимой переменной. ПРИМЕР 1: Y=X² ПРИМЕР 1: Y=X² X Y

Способ задания функции описанием Функцию можно задать описанием с помощью естественного языка. Например: «Каждому отрицательному числу соответствует -1,нулю – число 0, а каждому положительному – число 1». Например: «Каждому отрицательному числу соответствует -1,нулю – число 0, а каждому положительному – число 1». Обычно эту функцию обозначают так: Y=sign X (читают: «Игрек равен сигнум Х»). Латинское слово signum переводится как «знак» и указывает знак числа. Эту функцию можно задать так: -1, если Х0

Графический способ задания функции График функции – это множество тех и только тех точек (X;Y) координаты которых обращают уравнение Y=f(x) в верное равенство. График функции – это множество тех и только тех точек (X;Y) координаты которых обращают уравнение Y=f(x) в верное равенство. График функции позволяет не только с его помощью находить значения функции, но и видеть многие её свойства: в каких точках функция обращается в нуль, на каких промежутках она принимает отрицательные или положительные значения, где она возрастает или убывает и др. График функции позволяет не только с его помощью находить значения функции, но и видеть многие её свойства: в каких точках функция обращается в нуль, на каких промежутках она принимает отрицательные или положительные значения, где она возрастает или убывает и др. ПРИМЕР 1: Y=X² ПРИМЕР 1: Y=X²

Примеры: Функция: Y=X³ Функция: Y=X³ Функция: Y=³х Функция: Y=³х X Y Х Y

Область определения функции Область определения функции f(x) называется множество всех действительных значений независимой переменной х, при которых функция определена (имеет смысл). Обозначение: D(f) (англ. Define – определять). Пример: Найдите область определения функции Y=log0,5(3-2x) Решение: По определению логарифма получаем 3-2х>0, следовательно, 3>2x, т.е. x

ОБЛАСТЬ ЗНАЧЕНИЙ ФУНКЦИИ Областью значений функции Y=f(x) называется множество всех действительных значений, которые принимает зависимая переменная Y. Областью значений функции Y=f(x) называется множество всех действительных значений, которые принимает зависимая переменная Y. Обозначение E(f) (англ.exist-существовать). Обозначение E(f) (англ.exist-существовать). Пример: Найдите область значений функции Пример: Найдите область значений функции f(x)=-5cosX f(x)=-5cosX Решение: Областью значений функции y= cos x является промежуток [-1;1], т.е. -1cos x1. Умножая все члены неравенства на -5 и меняя знак неравенства на противоположный, получаем: -5-5cos х5 Решение: Областью значений функции y= cos x является промежуток [-1;1], т.е. -1cos x1. Умножая все члены неравенства на -5 и меняя знак неравенства на противоположный, получаем: -5-5cos х5

Примеры области определения и значения функции: Пример 1: Найдите область определения функции Y=2х/х-3. Решение: На нуль делить нельзя, то Х-30, а Х3 (т.к. при Х=3 выражение не имеет смысл). Значит D(у)=(- ;3)U(3;). Пример 2: Найдите область значений функции Y=7sinX. Решение: Областью значений Y=7sinХ является промежуток [-1;1], т.е. -1sinХ1. Умножая все члены неравенства на 7 получаем -77sinХ7.

Чётность, нечётность возрастание и убывание функции Функцию f называют чётной (соответственно нечётной), если её график симметричен относительно оси ординат (соответственно начала координат). Функцию f называют возрастающей (соответственно убывающей) на множестве X, если на этом множестве при увеличении аргумента увеличиваются (соответственно уменьшаются) значения функции.

Примеры четности, нечетности, возрастания и убывания функции: Функция возрастает на промежутке (-;0) Функция возрастает на промежутке (-;0) и убывает на промежутке (0;+). и убывает на промежутке (0;+). Пример: Определите какая из функций Пример: Определите какая из функций является четной является четной f(x)=3cos³х+5sin²x или f(x)=9х³-sin x + x f(x)=3cos³х+5sin²x или f(x)=9х³-sin x + x Решение: f(-х)=9(-х)³-sin(-х)+(-х)=-9х³+sin х–х = =-(9х³-sin х + х), т.е. f(x)=-f(x). Значит функция f(х)=9х³-sin х + х является нечетной т.е. f(x)=-f(x). Значит функция f(х)=9х³-sin х + х является нечетной f(-х)=3cos³(-x)+5sin²(-x)=3cos³x+5sin²x f(-х)=3cos³(-x)+5sin²(-x)=3cos³x+5sin²x т.е. f(х)=f(х). Значит функция f(х)=3cos³х+5sin²х является четной

Точки минимума и максимума функции. Пусть функция y=f(x) определена во всех точках интервала (a;b) и Х 0 Є (a;b). Если для всех точек x (a;b) таких, что x=x, выполняется неравенство f(Х)f(X 0 ) то X 0 называется точкой минимума функции y=f(x), значение Y 0 =f(X 0 ) называется минимумом функции Y=f(Х) Обозначение:Y min