Решение тригонометрических уравнений. Что называется arcsin a? Что называется arccos a?

Презентация:



Advertisements
Похожие презентации
Решение тригонометрических уравнений Выполнил ст. группы 49 АС Ливенцов И.Н. проверила: Полях И.А.
Advertisements

Метод решения хорош, если с самого начала мы можем предвидеть – и впоследствии подтвердить это, - что, следуя этому методу, мы достигнем цели. Лейбниц.
Краткий обзор развитии тригонометрии. Тригонометрия возникла и развивалась в древности как одна из разделов астрономии, отвечающий практическим нуждам.
Урок-экскурсия в научно- исследовательский институт "Методы решения тригонометрических уравнений"
У.У. Сойер Человеку, изучающему алгебру, часто полезнее решить одну задачу тремя различными способами, чем решать три-четыре различные задачи. Решая одну.
История тригонометрии Греция Индия Аравия Европа Презентацию подготовил: Ысманалы уулу Атабек.
Тригонометрия Тригонометрия-это часть геометрии, где с помощью тригонометрических функций связываются элементы треугольника. Тригонометрия-это часть геометрии,
Соотношения между сторонами и углами треугольника Синус, косинус и тангенс острого угла прямоугольного треугольника Выполнил: Кузнецов Платон 8/2.
Тригонометрия раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Данный термин впервые появился в 1595 г.
Тригонометрический журнал Страницы журнала: 1. Немного истории 2. Кроссворд. 3. Вопрос - Ответ 4. Игра «Сапер» 5. В здоровом теле – здоровый дух!(тест)
История тригонометрии выполнили: ученицы 10 В класса Жданова Людмила Бабичева Роксана учитель: Мартюшова Валентина Алексеевна.
Тригонометрия – слово греческое Metrew - измеряю Trigwnon – треугольник Тригонометрия в буквальном переводе означает – измерение треугольников Возникновение.
Тригонометрия «Формулы приведения» 9 класс. ; 1. Определение тригонометрических функций. 2. Знаки тригонометрических функций. 3. Значения тригонометрических.
Решение простейших тригонометрических уравнений. Синус, косинус считая Приложи старание. Алгоритм не забываем: Четверть – знак – название.
И СТОРИЯ ТРИГОНОМЕТРИИ Куляев Владимир 10 «Б». С ОДЕРЖАНИЕ Определения История Синус, косинус, тангенс Дальнейшее развитие Аналитическая теория Список.
Тригонометрия. Происхождение слова тригонометрия Тригонометрия (от греч. τρίγονο trigōnos (треугольник) и греч. μετρειν metreō (измерять), то есть измерение.
Тригонометрические функции. Тригонометрические функции острого угла есть отношения различных пар сторон прямоугольного треугольника 1) Синус - отношение.
Основополагающий вопрос: Почему знания тригонометрии необходимы для современного человека? Почему знания тригонометрии необходимы для современного человека?
Определение тригонометрии Тригонометрия – математическая дисциплина, изучающая зависимость между сторонами и углами треугольника.
Подготовила ученица 10 класса «А» ГОУ СОШ 1242 ЮАО г. Москвы Базякина Ирина.
Транксрипт:

Решение тригонометрических уравнений

Что называется arcsin a? Что называется arccos a?

Чему равен arсcos (-a)? Чему равен arcsin (-a)?

Найди ошибку ?

Назовите формулу нахождения корней уравнения вида sin x = a?

Назовите формулу нахождения корней уравнения вида cos x = a

Установите соответствие: sin x = 0 sin x = - 1 sin x = 1 cos x = 0 cos x = 1 tg x = 1 cos x =

Установите соответствие: sin x = 0 sin x = - 1 sin x = 1 cos x = 0 cos x = 1 tg x = 1 cos x =

Питискуса Слово «тригонометрия» впервые встречается в 1505 году в заглавии книги немецкого теолога и математика Питискуса. Происхождение этого слова греческое τρίγωνον – треугольник, μετρεω – мера. Иными словами, тригонометрия – наука об измерении треугольников. Тригонометрия выросла из человеческой практики, в процессе решения конкретных практических задач в областях астрономии, мореплавания и в составлении географических карт.

Следующий шаг в развитии тригонометрии был сделан индийцами в период с V по XII в. В отличие от греков индийцы стали рассматривать и употреблять в вычислениях уже не целую хорду ММ соответствующего центрального угла, а только ее половину МР, т. е. синуса - половины центрального угла. Наряду с синусом индийцы ввели в тригонометрию косинус, точнее говоря, стали употреблять в своих вычислениях линию косинуса. Им были известны также соотношения cos =sin(90 - ) и sin 2 +cos 2 =r 2, а также формулы для синуса суммы и разности двух углов. косинус

Сам термин косинус появился значительно позднее в работах европейских ученых впервые в конце XVI в.из так называемого « синуса дополнения », т.е. синуса угла, дополняющего данный угол до 90. « Синус дополнения » или ( по латыни) sinus complementi стали сокращенно записывать как sinus co или co-sinus.

Тригонометрия отделяется от астрономии и становится самостоятельной наукой ( Х III в.) В трудах среднеазиатских ученых тригонометрия превратилась из науки, обслуживающей астрономию, в особую математическую дисциплину, представляющую самостоятельный интерес. Это отделение обычно связывают с именем азербайджанского математика Насирэддина Туси ( ).

Его обширные таблицы синусов через 1 0 с точностью до 7-ой цифры и его изложенный тригонометрический труд «Пять книг о треугольниках всех видов» имели большое значение для дальнейшего развития тригонометрии в XVI – XVII вв. Швейцарский математик Иоганн Бернулли ( ) уже применял символы Обратных тригонометрических функций.

Франсуа Виет Франсуа Виет дополнил и систематизировал различные случаи решения плоских и сферических треугольников, открыл формулы для тригонометрических функций от кратных углов. Франсуа Виет дополнил и систематизировал различные случаи решения плоских и сферических треугольников, открыл формулы для тригонометрических функций от кратных углов.

Исключил из своих формул R – целый синус, принимая R = 1, и упростил таким образом записи и вычисления. Во «Введении в анализ бесконечных» (1748 г) трактует синус, косинус и т.д. не как тригонометрические линии, обязательно связанные с окружностью, а как тригонометрические функции, которые он рассматривал как отношения сторон прямоугольного треугольника, как числовые величины. Разрабатывает учение о тригонометрических функциях любого аргумента. Окончательный вид тригонометрия приобрела в XVIII веке в трудах в XVIII веке в трудах Л. Эйлера.

Однородные тригонометрические уравнения Однородные тригонометрические уравнения

: cos x

: cos 2 x

Определите вид уравнения и укажите способ его решения: а) sin x = 2 cos x; б) sin x + cos x = 0; в) 4 cos 3x + 5 sin 3x = 0; cos²x + 3 sin²x = 0; г) 1 +7 cos²x + 3 sin²x = 0; д) sin 3x – cos 3x = 0; д) sin 3x – cos 3x = 0; е) sin x cos x + cos²x е) sin x cos x + cos²x = 0