Выполнил: Бернадский Андрей ПРОБЛЕМЫ УПРАВЛЯЕМОГО ТЕРМОЯДЕРНОГО СИНТЕЗА, УСТАНОВКА «ТОКАМАК»

Презентация:



Advertisements
Похожие презентации
Презентация по физике на тему: «Термоядерная реакция» Выполнила: Сорочинская Александра 9 «а» класс.
Advertisements

Термоядерные реакции – экзотермические реакции синтеза легких ядер Условия протекания термоядерной реакции: Сближение положительно заряженных ядер на.
Это реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре.
Ядерные реакции ЯДЕРНЫЕ РЕАКЦИИ – это превращения атомных ядер в результате взаимодействия друг с другом или какими-либо элементарными частицами. Для осуществления.
«Управляемый термоядерный синтез». УТС Управляемый термоядерный синтез синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который,
Физика - 9 Термоядерная реакция. - реакция слияния (синтеза) легких ядер (таких, как водород, гелий и др), происходящая при температурах порядка сотен.
Масса покоя ядра урана больше суммы масс покоя осколков, на которые делится ядро. Для легких ядер дело обстоит как раз наоборот. Так, масса покоя ядра.
Ядерные реакции ЯДЕРНЫЕ РЕАКЦИИ – это превращения атомных ядер в результате взаимодействия друг с другом или какими-либо элементарными частицами. Для.
Управляемый термоядерный синтез Автор: Карнаков Петр 11 Б класс 2010 г.
Термоядерная реакция Подготовили: Волков Даниил Дементьева Мария Учитель Кабанова Елена Викторовна.
ЯДЕР ДЕЛЕНИЕ И СИНТЕЗ. Деление ядер урана Фриц Штрассман ( ) Отто Ган ( ) 1939 г. – деление ядер урана при бомбардировке их нейтронами.
Сила Ампера, действующая на отрезок проводника длиной Δ l с силой тока I, находящийся в магнитном поле B, F А = IBΔl sin α может быть выражена через силы,
Исследования в области физики плазмы и термоядерного синтеза Полтарыхина А. У04-01.
Ядерные реакции ЯДЕРНЫЕ РЕАКЦИИ – это превращения атомных ядер в результате взаимодействия друг с другом или какими-либо элементарными частицами. Для осуществления.
Термоядерные реакции Автор : учитель физики МОУ « СОШ » пгт. Кожва г. Печора Сучкова Елена Владимировна.
Опорный конспект по теме «Ядерные реакции. Деление ядер урана. Цепные ядерные реакции. Ядерный реактор» Авторы: Морозова Н.В., учитель физики МОУ лицея.
Школа 625 Н.М.Турлакова. §66. Деление ядер урана. §67. Цепная реакция. §68. Ядерный реактор. §69. Атомная энергетика. §70. Биологическое действие радиации.
Диаграмма «спектр-светимость» Главная последовательность Красные гиганты Сверхгиганты Белый карлики Массы звёзд Источник энергии Солнца и звёзд.
Транксрипт:

Выполнил: Бернадский Андрей ПРОБЛЕМЫ УПРАВЛЯЕМОГО ТЕРМОЯДЕРНОГО СИНТЕЗА, УСТАНОВКА «ТОКАМАК»

УПРАВЛЯЕМЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ Управляемый термоядерный синтез, процесс слияния лёгких атомных ядер, происходящий с выделением энергии при высоких температурах в регулируемых, управляемых условиях. Скорости протекания термоядерных реакций малы из-за кулоновского отталкивания положительно заряженных ядер. Поэтому процесс синтеза идёт с заметной интенсивностью только между лёгкими ядрами, обладающими малым положительным зарядом и только при высоких температурах, когда кинетическая энергия сталкивающихся ядер оказывается достаточной для преодоления кулоновского потенциального барьера. В природных условиях термоядерные реакции между ядрами водорода (протонами) протекают в недрах звёзд, в частности во внутренних областях Солнца, и служат тем постоянным источником энергии, который определяет их излучение. Сгорание водорода в звёздах идёт с малой скоростью, но гигантские размеры и плотности звёзд обеспечивают непрерывное испускание огромных потоков энергии в течение миллиардов лет.

ПРОБЛЕМЫ УТС И УСТАНОВКА «ТОКАМАК»

Даже в недрах солнца "прохладней" - не более 20 млн. градусов. Уже при нескольких тысячах градусов вещество становится плазмой - хаосом из электронов и ядер, которые с огромными скоростями мечутся и сталкиваются внутри камеры. И хаос этот становится активнее с ростом температуры. На Солнце этот хаос сдерживается силой гравитации. А как же сдержать его в искусственных условиях? Плазма также обладает высокой теплопроводности она мгновенно отдает свою энергию стенкам камеры и остывает. Итак, главная задача - нагреть плазму до нужной температуры и не давать ей коснуться стенок столько времени, сколько нужно для того, чтобы успело прореагировать достаточное количество ядер дейтерия и трития и произошла реакция с выделением огромной энергии

Решению этой задачи и служит идея, которая наилучшим образом работает в установках "Токамак". (Это слово образовано из первых слогов названия установки "ТОроидальная КАмера с МАгнитным полем"). В однородном магнитном поле частицы движутся вдоль силовых линий, закручиваясь вокруг них. Поэтому, если создать систему замкнутых магнитных силовых линий, то в принципе с их помощью можно удерживать плазму в некотором ограниченном объёме.

«ТОКАМАК» КОНСТРУКЦИЯ Внешне он похож на большой трансформатор с железным замкнутым сердечником и обмоткой, по которой пропускают очень сильный ток. Вместо вторичной обмотки трансформатора пустотелая тороидальная камера, напоминающая большой бублик.

Внутри этой камеры добиваются перехода вещества в плазменное состояние. До необходимой температуры плазму разогревают сильным электрическим разрядом, мощными токами сверхвысокой частоты и другими способами. А сильное магнитное поле сжимает плазму в плотный кольцевой шнур. На первый взгляд установка «Токамак» кажется простой. Грубо говоря, так оно и есть, если забыть на время о реальном устройстве, о конструкции, требующей уникальных материалов; забыть о том невообразимо горячем веществе, что укрощается в «бублике». Но не все получалось сразу, плазма никак не желает признавать магнитных стенок. Она просачивалась не успевав нагреться до нужной температуры. На модернизацию, усовершенствование установки и решение многих задач было потрачено три десятилетия. И к каждой задаче, которую надо было решать, можно было применить слово «впервые».

Например, впервые предстояло научиться создавать сверхсильное магнитное поле в довольно больших камерах. Причём поле в высшей степени симметричное. Был и такой период, когда плазма, надёжно удерживаемая магнитным полем, никак не хотела нагреваться выше всего лишь нескольких миллионов градусов. А так же проблемы с первой стенкой так называемого реактора. На создание мощных магнитных полей уходит львиная доля энергии, потребляемой «Токамаком», и пока он больше берёт, чем отдает. В 1975 году в Институте атомной энергии была пущена установка "Токамак-10". На этой установке удалось получить плазму с рекордной для того времени температурой - 15 миллионов градусов Цельсия. Сейчас новая установка - "Токамак-15" - строится в Институте атомной энергии. Объём плазменного "бублика" в нём будет примерно в пять раз больше, чем в Т-10.

СПАСИБО ЗА ВНИМАНИЕ