Развитие теории вероятностей. История.. Повторение. Основные элементы комбинаторики. 1.Размещение Это любое упорядоченное подмножество m из элементов.

Презентация:



Advertisements
Похожие презентации
КАК И ПОЧЕМУ ВОЗНИКЛА ТЕОРИЯ ВЕРОЯТНОСТИ ? Выполнил учащийся 2 ЛД: Поздняков Александр.
Advertisements

Развитие теории вероятностей. История.. Повторение. Основные элементы комбинаторики. 1.Размещение Это любое упорядоченное подмножество m из элементов.
Автор: к.ф.-м.н., доцент Жанабергенова Г.К.,. 1.Размещение: Это любое упорядоченное подмножество m из элементов множества n. (Порядок расположения элементов.
Реальная жизнь оказывается не такой простой и однозначной. Исходы многих явлений невозможно предсказать заранее, какой бы полной информацией мы о них.
Введение в теорию вероятностей и комбинаторику Введение в теорию вероятностей и комбинаторику Учитель математики МОУ РСОШ Корнева В.Н.
«Теория вероятностей»
Теория вероятностей раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.
Элементы комбинаторики Размещения. Задача 1. Сколькими способами 9 человек могут встать в очередь в театральную кассу? Решение: P 9 = 9! = 9·8·7·6·5·4·3·2·1.
Презентация по теме: Основы теории вероятностей
Тео́рия вероя́тностей раздел математики, изучающий закономерности случ айных явлений:случайные события, случайные величины, их свойства и операции над.
2 Развитие теории вероятностей с момента зарождения этой науки и до настоящего времени было несколько своеобразным. На первом этапе истории этой науки.
- самостоятельный раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить.
Теория вероятности и статистика.
Введение в комбинаторику и теорию вероятностей. 1) КомбинаторикаКомбинаторика 2) ФакториалФакториал 3) ПерестановкиПерестановки 4) РазмещенияРазмещения.
Теория вероятностей и математическая статистика Лекция 1. Введение. Основные понятия теории вероятностей. Элементы комбинаторики.
ИССЛЕДОВАТЬ СПОСОБ ВЫЧИСЛЕНИЯ БИНОМИАЛЬНЫХ КОЭФФИЦИЕНТОВ С ПОМОЩЬЮ ФОРМУЛ КОМБИНАТОРИКИ. ЗАДАЧИ : 1. Изучить историю возникновения комбинаторики как науки.
Теория вероятности.. Реальная жизнь оказывается не такой простой и однозначной. Исходы многих явлений невозможно предсказать заранее, какой бы полной.
{ определение – правила равенства, суммы и произведения – принцип включений – исключений – обобщение правила произведения – общее правило произведения.
Комбинаторика и теория вероятностей. Комбинаторика Задачи, в которых необходимо составлять определенным образом комбинации из нескольких предметов и находить.
Определение: Теория вероятностей – раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и.
Транксрипт:

Развитие теории вероятностей. История.

Повторение. Основные элементы комбинаторики. 1. Размещение Это любое упорядоченное подмножество m из элементов множества n. (Порядок важен). 2. Перестановки Если m = n, то эти размещения называются перестановками. 3. Сочетания Это любое подмножество из m – элементов, которые принадлежат множеству, состоящему из n – различных элементов. (Порядок не важен). Следствие. Число сочетаний из n элементов по n – m равно число сочетаний из n элементов по m, т.е.

Повторение. Решение задач. Задача.1. Сколько можно записать четырехзначных чисел, используя без повторения все 10 цифр? Решение: 1). 2) Т.к. есть среди чисел 0, который не может стоять впереди, поэтому надо еще найти: 3).

Повторение. Решение задач. Задача.2. Пусть имеется множество, содержащие 4 буквы: {А,В,С,Д}. Записать все возможные сочетания из указанных букв по три. Решение: Здесь в число сочетаний не включены, например АВС, ВСА, т.к. у нас уже есть АВС, потому что порядок элементов в сочетании не учитываются.

Повторение. Решение задач. Задача.3. Сколькими способами можно расставить 9 различных книг на полке, чтобы определенные 4 книги стояли рядом? Решение: Если обозначить 4 определенные книги как одно целое, то получается 6 книг, которые можно переставлять способами. 4 определенные книги можно переставлять способами. Тогда всего перестановок по правилу умножения будет

Повторение. Решение задач. Задача.4. Нужно выбрать в подарок 4 из 10 имеющихся книг. Сколькими способами это можно сделать? Решение: Задача.5. Имеется 10 белых и 5 черных шаров. Сколькими способами можно выбрать 7 шаров, чтобы среди них были 3 черных? Решение: Белые шары:. Черные шары:. Тогда.

Повторение. Решение задач. Задача.6. Сколькими способами можно группу из 12 человек разбить на 2 подгруппы, в одной из которых должно быть не более 5, а во второй – не более 9 человек? Решение: Первая подгруппа может состоять либо из 3, либо из 4, либо из 5 человек:

Повторение. Решение задач. Задача.7. Десять команд участвуют в разыгрывание первенства по футболу, лучшие из которых занимают 1-е, 2-е и 3-е места. Две команды, занявшие последние места не будут участвовать в следующем таком же первенстве. Сколько разных вариантов результата первенства может будут учитывать, если только положение первых трех и последних 2-х команд? Решение: 1-е три места может будут распределены: способ Остается 7 команд, две из которых выбывают из следующего первенства т.к. порядок выбывших команд не учитывается => способом. Тогда число возможных результатов =

Повторение. Решение задач. Задача.8. Сколько существует вариантов опроса 11 учащихся на одном занятии, если ни один из них не будет вызван дважды и на занятии может будет опрошено любое количество учащихся, порядок опроса не важен? Решение: 1)может не спросить ни одного, т.е., 2)если только 1, то, если только 2-х, то и т.д. Тогда он всего опросит

Проект. Как и почему возникла теория вероятностей?

План: Предыстория теории вероятностей. Возникновение теории вероятностей как науки. Основателями теории вероятностей Этапы развития. Современный период развития теории вероятностей. Вклад соотечественников в теорию. Выводы.

Теория вероятностей Развитие теории вероятностей с момента зарождения этой науки и до настоящего времени было несколько своеобразным. На первом этапе истории этой науки она рассматривалась как занимательный пустячок, как собрание курьезных задач, связанных в первую очередь с азартными играми в кости и карты.

Этапы развития. Предыстория теории вероятностей. В этот период, начало которого теряется в веках, ставились и решались элементарные задачи, которые позже будут отнесены к теории вероятностей. Никаких специальных методов в этот период не возникает. Этот период кончается работами Кардано, Пачоли, Тарталья и др. С вероятностными представлениями мы встречаемся еще в античности. У Демокрита, Лукреция Кара и других античных ученых и мыслителей мы находим глубокие предвидения о строении материи с беспорядочным движением мелких частиц (молекул), мы встречаем рассуждения о равновозможных исходах (равновероятных) и т. п. Н. Тарталья Д. Кардано

Этапы развития. Возникновение теории вероятностей как науки. К середине, XVII в. вероятностные вопросы и проблемы, возникающие в статистической практике, в практике страховых обществ, при обработке результатов наблюдений и в других областях, привлекли внимание ученых, так как они стали актуальными вопросами. В первую очередь это относится к Б. Паскалю, П. Ферма и X. Гюйгенсу. В этот период вырабатываются первые специфические понятия, такие, как математическое ожидание и вероятность (в форме отношения шансов), устанавливаются и используются первые свойства вероятности: теоремы сложения и умножения вероятностей. В это время теория вероятностей находит свои первые применения в демографии, страховом деле, в оценке ошибок наблюдения, широко используя при этом понятие вероятности.

Основатели теории вероятностей Основателями теории вероятностей были французские математики Б. Паскаль и П. Ферма, и голландский ученый Х. Гюйгенс Б. Паскаль П. Ферма Х. Гюйгенс

Этапы развития. Классическое определение вероятности. Следующий период начинается с появления работы Я. Бернулли "Искусство предположений" (1713), в которой впервые была строго доказана первая предельная теорема простейший случай закона больших чисел. К этому периоду, который продолжался до середины XIX в., относятся работы Муавра, Лапласа, Гаусса и др. В центре внимания в это время стоят предельные теоремы. Теория вероятностей начинает широко применяться в различных областях естествознания. И хотя в этот период начинают применяться различные понятия вероятности (геометрическая вероятность, статистическая вероятность), господствующее положение занимает, в особенности после работ Лапласа, так называемое классическое определение вероятности. Якоб Бернулли

Этапы развития. Следующий период развития теории вероятностей связан прежде всего с Петербургской математической школой. За два столетия развития теории вероятностей главными ее достижениями были предельные теоремы. Но не были выяснены границы их применимости и возможности дальнейшего обобщения. Наряду с огромными успехами, достигнутыми теорией вероятностей в предыдущий период, были выявлены и существенные недостатки в ее обосновании, это в большой мере относится к недостаточно четким представлениям о вероятности.

Этапы развития. Современный период развития теории вероятностей начался с установления аксиоматики. Этого прежде всего требовала практика, так как для успешного применения теории вероятностей в физике, биологии и других областях науки, а также в технике и военном деле необходимо было уточнить и привести в стройную систему ее основные понятия. Благодаря аксиоматике теория вероятностей стала абстрактно-дедуктивной математической дисциплиной, тесно связанной с другими математическими дисциплинами. Это обусловило небывалую широту исследований по теории вероятностей и ее применениям, начиная от хозяйственно-прикладных вопросов и кончая самыми тонкими теоретическими вопросами теории информации и теории случайных процессов.

Строгое логическое обоснование теории вероятностей произошло в XX в. и связано с именами советских математиков С. Н. Бернштейна и А. Н. Колмогорова. Основатели теории вероятностей С. Н. Бернштейн А. Н. Колмогоров

Выводы: Возникновение и развитие теории вероятностей продиктовано необходимостью ее применениям, начиная от хозяйственно- прикладных вопросов и заканчивая самыми тонкими теоретическими вопросами теории информации и теории случайных процессов.

Домашнее задание. 1. Сколькими способами 9 человек могут встать в очередь в театральную кассу? 2. На плоскости отметили 5 точек. Их надо обозначить латинскими буквами. Сколькими способами это можно сделать (в латинском алфавите 26 букв)? 3. В магазине продается 8 различных наборов марок. Сколькими способами можно выбрать из них 3 набора? 4. Сколькими способами из класса, где учатся 24 учащихся, можно выбрать: а) двух дежурных, б) старосту и его заместителя? 5. Проект «Вклад соотечественников в теорию вероятностей».