Презентация на тему: Треугольники. Применение треугольников в практической жизни.

Презентация:



Advertisements
Похожие презентации
Виртуальная экскурсия по сети ИНТЕРНЕТ. Начиная игру в бильярд, необходимо расположить шары в виде треугольника. Для этого используют специальную треугольную.
Advertisements

МБОУ Гимназия с.Большой Сардек, Мубаракова Роза Равилевна, учитель математики.
«Треугольники. Виды треугольников» Учитель математики и информатики МБОУ «СОШ 2» Перевезенцева Е.Н.
Виды треугольников (в зависимости от углов) Остроугольные Прямоугольные Тупоугольные.
Треугольник. Определение и свойства Треугольник - простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны. a c b A B C Треугольник существует,
Обобщить изученный материал по данной теме; Формировать умения применять математические знания к решению практических задач; Развивать познавательную.
Математический папирус Ахмеса (также известен как папирус Ринда или папирус Райнда) древнеегипетское учебное руководство по арифметике и геометрии.
ТРЕУГОЛЬНИК И ЕГО ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ Гипотеза -решение задачи с помощью признаков равенства треугольников.
«Любая гипотеза требует доказательства. Никакое человеческое исследование не может быть названо истиной, если оно не проходит через математические доказательства».
«Библиотека начинающего педагога»: II-ой международный конкурс медиапрезентаций "Палитра Топ Слайдов" Номинация «Общеобразовательная школа» Треугольник.
Бермудский треугольник район в Атлантическом океане, в котором якобы происходят таинственные исчезновения морских и воздушных судов. Район ограничен линиями.
Треугольник – это геометрическая фигура, состоящая из трёх точек, не лежащих на одной прямой, и трёх последовательно соединяющих их отрезков. Точки называются.
Цели урока: 1. Повторить понятие смежных и вертикальных углов. 2. Закрепить навык решения задач на вычисление вертикальных и смежных углов. 3. Отработать.
Решение задач по теме «Признаки равенства треугольников». Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи,
1) 3 см, 30 мм, ½ дм –равносторонний. 2) если один угол равен 40 градусов, то треугольник остроугольный. 3)Если углы треугольника 60, 100, 20 градусов,
ТРЕУГОЛЬНИКИ ОСТРОУГОЛЬНЫЕ ПРЯМОУГОЛЬНЫЕ ТУПОУГОЛЬНЫЕ.
Теорема Пифагора Ладанова И.В. МКОУ «Верх-Жилинская ООШ» Косихинский район Алтайский край.
Треугольники 1.Треугольник. 2.Виды треугольников. 3.Основные линии в треугольнике. 4.Признаки равенства треугольников. 5.Сумма углов треугольника. 6.Внешние.
Тема:Первый признак равенства треугольников. Цель урока:Закрепить знания о простейших геометрических фигурах,познакомиться с первым признаком равенства.
Мы изучаем признаки равенства треугольников!. Первый признак равенства треугольников Если две стороны и угол между ними одного треугольника соответственно.
Транксрипт:

Презентация на тему: Треугольники. Применение треугольников в практической жизни.

Это треугольники

Определение Треугольник – это фигура, которая состоит из трех точек, которые не лежат на одной прямой и трех отрезков соединяющих эти точки. точки А, В, С – вершины, отрезки АВ, ВС, АС – стороны А, В, С – углы треугольника

Виды треугольников по сторонам Треугольники Равнобедренный Равносторонний Разносторонний

Виды треугольников по сторонам

Виды треугольников по углам Треугольники Прямоугольный Остроугольный Тупоугольный

Виды треугольников по углам Остроугольный – у него все углы острые Прямоугольный – у него один угол прямой Тупоугольный – у него один угол тупой

Историческая справка Треугольник – самая простая замкнутая прямолинейная фигура, одна из первых, свойства которых человек узнал еще в глубокой древности, так как эта фигура всегда имела широкое применение в практической жизни. Изображения треугольников и задачи на треугольники встречаются во многих папирусах Древней Греции и Древнего Египта. Древнегреческий ученый Герон (I век) впервые применил знак вместо слова треугольник.

Практическое применение треугольников Равнобедренные треугольники часто встречаются в практике. Например, дом с двускатной крышей выглядит с торцевой стороны как пятиугольник, составленный из прямоугольника и равнобедренного треугольника. Крышу поддерживают наклонные балки-стропила. Каждая их пара одинаковой длины скрепляется с горизонтальной балкой, так что вместе они образуют стороны равнобедренного треугольника. Передняя и задняя стенки палатки образуют пятиугольник, составленный из равнобедренного треугольника и прямоугольника.

Геометрическая фигура «Флексагон» (от англ. to flex, что означает «складываться, гнуться»). Флексагон – «гнущийся» многоугольник, который состоит из 10 равносторонних треугольников. Флексагон обладает удивительной способностью внезапно менять свою форму и цвет, выворачиваясь на «изнанку».

Египетский треугольник. Землемеры Древнего Египта для построения прямого угла пользовались следующим приемом: бечевку делили узлами на 12 равных частей и концы связывали. Затем бечевку растягивали на земле так, чтобы получался треугольник со сторонами 3,4,5. угол треугольника, противолежащей стороне с пятью делениями, был прямой. В связи с указанным способом построение прямого угла, треугольник со сторонами 3,4,5 иногда называют египетским.

Египетские пирамиды – это одни из грандиозных сооружений, созданных когда-либо руками человека. Самая известная из египетских пирамид – пирамида Хеопса в Гизе. Из-за своих огромных размеров ее иногда еще называют Большой пирамидой. Ее высота составляет 146,6 м, Площадь основания составляет 230*230 м 2. Строительство пирамиды Хеопса продолжалось 30 лет. Она состояла из 128 слоев камня и представляла собой ступенчатую гору. Затем ступени были заложены камнями так, что ее поверхность стала хотя и не вполне гладкой, но уже без выступов. В завершении работ четыре треугольные грани пирамиды были облицованы плитами из ослепительно белого известняка и отполированы до зеркального блеска. Края плит были пригнаны настолько точно, что между ними нельзя было вставить даже лезвие острого ножа. По свидетельству очевидцев, на солнце и при лунном свете гробница Хеопса загадочно сверкала, как огромный светящийся изнутри кристалл. Египетская пирамида Хеопса в Гизе – древнейшее, и вместе с тем, единственное сохранившееся до наших дней чудо света.

Тайны пирамиды Хеопса Пирамиды «умеют» очень многое. Растворимый кофе, например, постояв под пирамидой, приобретает вкус натурального. Продукты (рыба, мясо, яйца) не портятся, только усыхают (мумифицируются); вода не зацветает и не заражается бактериями (зараженная микробами - очищается); молоко долго не киснет, а затем превращается в качественную простоквашу; сыр не плесневеет; срезанные цветы в воде, выдержанной под пирамидой, сохраняются до 32 дней; с волос при мытье головы «пирамидальной» водой исчезает седина….

Где же можно встретить треугольники, кроме математики? Начиная игру в бильярд, необходимо расположить шары в виде треугольника. Для этого используют специальное приспособление. Расстановка кеглей в игре Боулинг тоже в виде равностороннего треугольника.

Правило «золотого треугольника» Правило «золотого треугольника» основано на психологии покупателя – найдя нужный ему товар, покупатель устремляется в кассу. Задача продавцов – заставить задержаться его в магазине подольше, расположив нужный покупателю товар в вершинах воображаемого треугольника, то есть «заякорить» покупателя. Чем больше площадь треугольника, тем более удачным можно назвать планировку магазина. В продуктовом магазине этими товарами – якорями являются гастрономия, молочная продукция, хлеб. Задняя торцевая стена торгового зала является вторым местом по значимости и именно там целесообразнее всего располагать товары-якоря – именно для того, что бы заставить покупателя пройти весь периметр магазина.

Бермудский треугольник Бермудский треугольник иногда еще называют дьявольским треугольником. Это район в Атлантическом океане, в котором происходят якобы таинственные исчезновения морских и воздушных судов. Район ограничен линиями от Флориды к Бермудским островам, далее к Пуэрто-Рико и назад к Флориде через Багамы. Выдвигаются различные гипотезы для объяснения этих исчезновений, от необычных погодных явлений до похищений инопланетянами. Наибольшую известность дьявольскому треугольнику принесла история исчезновения американского звена бомбардировщиков – торпедоносцев.

Из третьего признака равенства треугольников следует, что треугольник – жесткая фигура. Представим себе две рейки, у которых два конца скреплены гвоздем. Такая конструкция не является жесткой: сдвигая или раздвигая свободные концы реек, мы можем менять угол между ними. Теперь возьмем еще одну рейку и скрепим ее концы со свободными концами первых двух реек. Полученная конструкция – треугольник – уже будет жесткой. В ней нельзя сдвинуть или раздвинуть никакие две стороны, т.е. нельзя изменить ни один угол. Действительно, если бы это удалось, то мы получили бы новый треугольник, не равный исходному. Но это невозможно, т.к. новый треугольник должен быть равен исходному по третьему признаку равенства треугольников.

Это свойство – жесткость треугольника – широко используется на практике. Так, чтобы закрепить столб в вертикальном положении, к нему ставят подпорку; такой же принцип используется при установке кронштейна. Свойство жесткости треугольника широко используют в практике при строительстве железных конструкций. 19 марта 2012 года Шуховской башне на Шаболовке исполнилось 90 лет. Треугольники делают надежными конструкции высоковольтных линий электропередач.

Треугольники в конструкции железнодорожного моста.

В глубокой древности вместе с астрономией появилась наука – тригонометрия. Слово «тригонометрия» произведено от греческих «треугольник» и «меряю». Буквальное значение – «наука об измерении треугольников». С помощью натянутых веревок длиной 3, 4 и 5 единиц египетские жрецы получали прямые углы при возведении храмов и т.п.

Треугольник Паскаля Устройство треугольника Паскаля: каждое число равно сумме двух расположенных над ним чисел. Все элементарно, но сколько в этом таится чудес. Треугольник можно продолжать неограниченно. Треугольник Паскаля компьютер перевел на язык цвета.

Треугольник Пенроуза или трибар из коллекции невозможных объектов. Кажется, что мы видим три бруска квадратного сечения соединенных в треугольник. Если вы закроете любой угол этой фигуры, то увидите, что все три бруска соединены правильно. Но когда вы уберете руку с закрытого угла, то станет очевиден обман. Те два бруска, которые соединяются в этом угле, не должны быть даже вблизи друг друга! Для построения этой фигуры взяли трибар и разбили его на кубы. При этом ничего не изменилось: новая фигура так же совершенно невозможна, как и предшествующая ей! Треугольник Пенроуза вдохновляет художников и скульпторов.

Спасибо за внимание!