ВЫПОЛНИЛА :СТУДЕНТКА КОЧЕРГИНА НАТАЛЬЯ
Еще в глубокой древности человек чертил и рисовал на скалах, камнях, стенах и предметах домашнего обихода изображения вещей, деревьев, животных и людей. Он делал это для удовлетворения своих потребностей, в том числе эстетических. При этом основное требование к таким изображениям заключалось в том, чтобы изображение вызывало правильное зрительное представление о форме изображаемого предмета. Римский архитектор Витрувий еще в 1 в. до н. э. применял три проекции – план, фасад и профиль. С ростом практических и технических применений изображений (в строительстве зданий и других гражданских и военных сооружений и т. п.) к ним стали предъявлять и такие требования, чтобы по изображению можно было судить о геометрических свойствах, размерах и взаиморасположении отдельных элементов определенного предмета.
Об изображениях, выполненных методами, близкими к аксонометрии, свидетельствуют русские фрески и иконописная живопись XIV-XVI вв. Отсутствием перспективы характеризуются многие русские миниатюры с технической тематикой. Растущие запросы архитектуры, техники, промышленности, военного дела и живописи привели к формированию специальной математической ветви – начертательной геометрии
1. Многогранники – замкнутые пространственные фигуры, ограниченные плоскими многоугольниками. Вершины и стороны многогранников называются вершинами и ребрами многогранников. Они образуют пространственную сетку. Если вершины и ребра многогранников находятся по одну сторону плоскости любой из его граней, то многогранник называется выпуклым, все его грани – выпуклые. Из всего многообразия наибольший практический интерес, представляют: призмы, пирамиды правильные многогранники и их разновидности.
Многогранник две грани, которого n-угольники в параллельных плоскостях, а остальные n-граней - параллелограммы, называется n-угольной призмой. Многогранники являются основаниями призмы, а параллелограммы – боковыми гранями призмы.
Многогранник, у которого одна из граней – произвольный многоугольник, а остальные грани – треугольники, имеющие общую вершину, называются пирамидой. Грань–многоугольник называют основанием призмы, а треугольники – боковыми гранями пирамиды. Общая вершина треугольников называется особой вершиной пирамиды (обычно, просто вершиной).
Если пирамиду отсечь плоскостью параллельной основанию, то получим усеченную пирамиду.
Под изображением многогранников на чертеже понимают изображение ограничивающей его многогранной поверхности, т.е. изображение совокупности составляющих ее многогранников. Графически простую многогранную поверхность удобно задавать проекциями ее сетки.
Спасибо за внимание!!!