Мембранные потенциалы и их ионная природа. Якуб Тамаев

Презентация:



Advertisements
Похожие презентации
Механические свойства биологических тканей. Фазовые переходы. Физические процессы в биологических мембранах.
Advertisements

Лекция 9 БИОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ В ОРГАНИЗМЕ. План лекции 1.Краткая характеристика биопотенциалов. 2.Виды потенциалы. 3.Доннановское равновесие, его.
Биоэлектрические явления в возбудимых тканях. Законы раздражения возбудимых тканей.
Биоэлектрические потенциалы 1. Значение биопотенциалов Одна из важнейших функций биологической мембраны – генерация и передача биопотенциалов. Это явление.
© Ю.И. Савченков СТАРТ Учебные ЭВМ-программы по физиологии МЕХАНИЗМЫ ВОЗБУЖДЕНИЯ ПОТЕНЦИАЛ ДЕЙСТВИЯ.
Тема: «Биологические потенциалы. Молекулярные механизмы электрохимических потенциалов мембран и распространение нервного импульса вдоль возбудимого волокна»
1 Лекция 2 Биоэлектрические явления в возбудимых тканях План 1. Характеристика возбудимых тканей(ВТ). 2. Мембранный потенциал (МП). 3. Потенциал действия.
СРС Тема: «Формальное описание ионных токов в модели Ходжкина – Хаксли. Независимость работы отдельных каналов» Вид: презентация Кафедра: Информатика с.
Роль мембранного потенциала в жизнедеятельности клетки. Биоэлектрические явления при возбуждении клетки. Занятие 3.
Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники.
НОРМАЛЬНАЯ ФИЗИОЛОГИЯ Гайдуков Александр Евгеньевич ФФМ МГУ 2010 ЛЕКЦИЯ 4 Свойства пассивной электропроводности мембраны Кабельная теория распространения.
© Ю.И. Савченков СТАРТ Учебные ЭВМ-программы по физиологии МЕХАНИЗМЫ ПОЛЯРИЗАЦИИ МЕМБРАНЫ МЕМБРАННЫЙ ПОТЕНЦИАЛ.
ФИЗИОЛОГИЯ И ЭТОЛОГИЯ ЖИВОТНЫХ: Курс лекций Профессор В.И. Максимов (ФГБОУ ВПО МГАВМиБ им. К.И. Скрябина) Лекция 2 ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ План лекции:
1 Ловать Максим Львович, ст.преп. каф. физиологии человека и животных биологического ф-та МГУ им. М.В. Ломоносова Физиология возбудимых клеток. Мембранный.
Введение в физиологию Физиология, как наука, изучает: а) функции клеток, органов и функциональных систем; б) механизмы их регуляции.
На этом уроке мы рассмотрим поведение в электрическом поле веществ, которые не могут проводить электрический ток (диэлектриков), и тех веществ, которые.
Основные понятия и определения, механизмы переноса тепла. Теплопроводность. Основы теории передачи теплоты.
Тема лекции: ОБЩАЯ ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ. ФИЗИОЛОГИЯ МЫШЦ И НЕРВОВ. ОСОБЕННОСТИ ФУНКЦИОНИРОВАНИЯ МЫШЦ ЧЕРЕПНО- ЛИЦЕВОЙ ОБЛАСТИ. Тема лекции: ОБЩАЯ.
Курс «Функциональная зоология». 2 Внутренняя координация работ всех органов и систем органов 1. Нервная система– система быстрого действия В ее основе.
«Электрический ток в различных средах» Выполнили: Кирдеева Е.С. Пасик А.И., ученики 10 класса А МОУ СОШ 31 Г.Иркутска, 2010 год.
Транксрипт:

Выполнил: Тамаев Я. Западно-Казахстанский государственный медицинский университет имени Марата Оспанова

* Мембранные потенциалы и их ионная природа * Потенциал покоя, уравнение Нернста * Стационарный потенциал Гольдмана – Ходжкина * Механизм генерации и распространения потенциала действия * Список использованной литературы

* Сущность этой теории заключается в том, что потенциал покоя и потенциал действия являются по своей природе мембранными потенциалами, обусловленными полупроницаемыми свойствами клеточной мембраны и неравномерным распределением ионов между клеткой и средой, которое поддерживается механизмами активного переноса, локализованными в самой мембране.

* Как было установлено, возникновение потенциала покоя обусловлено, в основном, наличием концентрационного градиента ионов калия и неодинаковой проницаемостью клеточных мембран для различных ионов. * Согласно теории Ходжкина, Хаксли, Катца, клеточная мембрана в состоянии покоя проницаема, в основном, только для ионов калия. * Ионы калия диффундируют по концентрационному градиенту через клеточную мембрану в окружающую жидкость; анионы не могут проникать через мембрану и остаются на ее внутренней стороне. * Так как ионы калия имеют положительный заряд, а анионы, остающиеся на внутренней поверхности мембраны, - отрицательный, то внешняя поверхность мембраны при этом заряжается положительно, а внутренняя - отрицательно.

где [K]i и [K]e - активность ионов калия внутри и снаружи клетки; F - число Фарадея; T - абсолютная температура; E - изменение потенциала; R - газовая константа.

Основной вклад в суммарный поток зарядов практически во всех клетках вносят ионы Na+, K+ и Cl-, поэтому

( P - проницаемость) Это уравнение называется уравнением стационарного потенциала Гольдмана - Ходжкина - Катца.

Рассмотрим перенос заряженных частиц (ионов). В отсутствие градиента концентрации главная движущая сила при переносе ионов - электрическое поле. Если частица (ион) в водном растворе или внутри мембраны находится во внешнем электрическом поле с градиентом потенциала, то она будет двигаться - электрохимический потенциал. То есть поток равен произведению концентрации носителя на его подвижность и на градиент его электрохимического потенциала. Знак "-" указывает на то, что поток направлен в сторону убывания Для однородной среды и учитывая значение подставленное в формулу получается электро диффузное уравнение Нернста - Планка: где R - универсальная газовая постоянная, T - абсолютная температура.

Все клетки возбудимых тканей при действии различных раздражителей достаточной силы способны переходить в состояние возбуждения. Обязательным признаком возбуждения является изменение электрического состояния клеточной мембраны. Общее изменение разности потенциалов между клеткой и средой, происходящее при пороговом и сверхпороговом возбуждении клеток, называется потенциалом действия. Потенциалы действия обеспечивают проведение возбуждения по нервным волокнам и инициируют процессы сокращения мышечных и секреции железистых клеток. На основе обобщения большого экспериментального материала было установлено, что потенциалы действия возникают в результате избыточного по сравнению с покоем диффузии ионов натрия из окружающей жидкости внутрь клетки. Формирование потенциала действия обусловлено двумя ионными потоками через мембрану: поток ионов натрия внутрь клетки приводит к перезарядке мембраны, а противоположно направленный поток ионов калия обусловливает восстановление исходного потенциала покоя. Потоки приблизительно равны по величине, но сдвинуты во времени. Благодаря этому сдвигу во времени и возможно появление потенциала действия. Потенциал действия, возникнув в одном участке нервной клетки, быстро распространяется по всей ее поверхности. Распространение потенциала действия обусловлено возникновением локальных токов, циркулирующих между возбужденным и невозбужденным участками клетки. В состоянии покоя внешняя поверхность клеточной мембраны имеет положительный потенциал, а внутренняя - отрицательный.

В момент возбуждения полярность мембраны изменяется на обратную: ее внешняя поверхность заряжена отрицательно по отношению к внутренней (рисунок). В результате этого между возбужденным и невозбужденным участками мембраны (B и H) имеется разность потенциалов. Наличие разности потенциалов приводит к появлению между этими участками электрических токов, называемых локальными токами или токами действия. На поверхности клетки локальный ток течет от невозбужденного участка к возбужденному; внутри клетки он течет в обратном направлении.

Локальный ток, как и любой электрический ток, оказывает раздражающее действие на соседние невозбужденные участки и вызывает увеличение проницаемости их мембран. Это приводит к снижению в них потенциала покоя. Когда деполяризация достигает критического значения, в этих участках возникают потенциалы действия, а в том участке, который ранее был возбужденным, в это время уже происходят восстановительные процессы реполяризации. Вновь возбужденный участок, в свою очередь, становится электроотрицательным и возникающий локальный ток раздражает следующий за ним участок. Этот процесс многократно повторяется и обусловливает распространение импульсов возбуждения по всей длине клетки в обоих направлениях. В нервной системе прохождение импульсов только в определенном направлении обусловлено наличием синапсов, обладающих односторонней проводимостью. Под влиянием локальных токов волна возбуждения распространяется вдоль волокна без затухания (бездекрементное проведение). Это обусловлено тем, что локальные токи только деполяризуют мембрану до критического уровня, а потенциалы действия в каждом участке мембраны поддерживаются независимыми ионными потоками, перпендикулярными к направлению распространения возбуждения. Скорость уменьшения мембранного потенциала до критического уровня зависит от разности потенциалов между возбужденным и невозбужденным участками и от кабельных свойств волокна: электрической емкости и сопротивления мембраны, сопротивлений аксоплазмы и окружающей среды. Кабельные свойства волокна обеспечивают деполяризацию мембраны до критического уровня, а последующая диффузия натрия в клетку усиливает деполяризацию и обеспечивает незатухающее проведение импульса.

В электрическом отношении миелин является изолятором; его удельное сопротивление в 10 млн раз превышает удельное сопротивление раствора Рингера. В результате этого локальные токи через миелиновые оболочки протекать не могут; они циркулируют между перехватами Ранвье. При возбуждении одного перехвата Ранвье между ним и следующим перехватом возникают локальные токи и импульс как бы перескакивает на второй перехват, со второго - на третий и т.д. Такой способ проведения нервного импульса называется сальтаторным. При блокировании одного перехвата Ранвье каким-либо анестезирующим веществом, например кокаином, импульс сразу передается на третий перехват. При блокировании сразу двух перехватов импульс дальше распространяться не может: сопротивление между первым и четвертым перехватами велико, и локальный ток между ними не достигает порогового значения. В результате сальтаторного способа передачи скорость распространения первого импульса в мякотных волокнах примерно в 10 раз выше, чем в безмякотных, при одинаковом диаметре волокон. Помимо этого, сальтаторный способ проведения возбуждения является более экономичным, поскольку в этом случае ионные потоки проходят не через всю поверхность клетки, как при непрерывном распространении, а только через поверхность в области перехватов Ранвье.

1. Волькенштейн М.В. Общая биофизика: Монография - М.: Наука, – 599 с. 2. Биофизика: Учебник / Тарусов Б.Н., Антонов В.Ф., Бурлакова Е. В. и др. – М.: Высшая школа, – 464 с. 3. Ю.А. Владимиров, Д.И. Рощупкин, А.Я. Потапенко, А.И. Деев Биофизика: Учебник. - М.: Медицина, Ремизов А.Н. Медицинская и биологическая физика: Учеб. для мед. спец. Вузов. – М.: Высшая школа, – 616 с