ЗАКОНЫ ДВИЖЕНИЯ ПЛАНЕТ СОЛНЕЧНОЙ СИСТЕМЫ Бушков Павел.

Презентация:



Advertisements
Похожие презентации
Законы Кеплера Законы движения небесных тел
Advertisements

Законы Кеплера – законы движения небесных тел Тема урока: Законы Кеплера – законы движения небесных тел.
Законы Кеплера – законы движения небесных тел Тема урока: Законы Кеплера – законы движения небесных тел 900igr.net.
ЗАКОНЫ КЕПЛЕРА. Законы движения планет с давних пор привлекали внимание людей. Считалось, что орбиты планет круговые.
Законы движения планет с давних пор привлекали внимание людей. Считалось, что орбиты планет круговые.
С древнейших времён считалось, что небесные тела движутся по «идеальным кривым» – окружностям. Однако в XVII в, выяснилось, что орбиты небесных тел отличаются.
3-й закон Кеплера.. Эллипс определяется как геометрическое место точек, для которых сумма расстояний от двух заданных точек (фокусов F1 и F2) есть величина.
Законы Кеплера
Для начала вспомним, что такое эллипс? Эллипс – замкнутая кривая, имеющая такое свойство, что сумма расстояний от любой её точки до двух заданных, называемых.
Законы движения планет и небесных тел Выполнила студентка ТМК Иванова Алиса 112 группа.
ДВИЖЕНИЕ ПЛАНЕТ РЕШЕНИЕ ЗАДАЧ Н.И. Бондарь. ДВИЖЕНИЕ ПЛАНЕТ РЕШЕНИЕ ЗАДАЧ Синодическим периодом обращения ( S ) планеты называется промежуток времени.
Законы Кеплера. Три закона движения планет относительно Солнца были выведены эмпирически немецким астрономом Иоганном Кеплером в начале XVII века.
Законы движения планет. Выполнили ученицы 11 класса- Еремеева Валентина и Назарова Дарья.
Законы Кеплера Изучение законов Кеплера на уроке астрономии в 11 классе Корчагина Надежда Николаевна учитель физики, МОУ «Средняя общеобразовательная школа.
Иоганн Кеплер и Его три закона.. «Одна вещь наполняет душу всегда новым и все более сильным удивлением и благоговением, чем чаще и продолжительнее мы.
Движение планет. А. Меркурий; Б. Венера; В. Земля; Г. Марс; Д. Юпитер; Е. Сатурн; Ж. Уран; З. Нептун 1.Какие из планет относятся к внутренним? 2.Какие.
Выполнили: Елкина К.В. Тамбовцева А.А.. Историческая справка Первый закон Второй закон Третий закон.
ДИНАМИКА ТОЧКИ ЛЕКЦИЯ 6: ДВИЖЕНИЕ МАТЕРИАЛЬНОЙ ТОЧКИ В ЦЕНТРАЛЬНОМ СИЛОВОМ ПОЛЕ.
Законы Кеплера Урок астрономии 11 класс Выполнила: учитель физики МОУ Кузнецкая СОШ Пряхина Н.В МОУ Кузнецкая СОШ Пряхина Н.В.
Элементы сферической астрономии. Автор презентации «Элементы сферической астрономии» Помаскин Юрий Иванович - учитель физики МБОУ СОШ 5 г. Кимовска Тульской.
Транксрипт:

ЗАКОНЫ ДВИЖЕНИЯ ПЛАНЕТ СОЛНЕЧНОЙ СИСТЕМЫ Бушков Павел

Многие ученые вплоть до начала XVII в. считали, что движение небесных тел должно быть равномерным и происходить по «самой совершенной» кривой – окружности. Иоганн Кеплер Кеплеру удалось преодолеть этот предрассудок и установить действительную форму планетных орбит, а также закономерность изменения скорости движения планет при их обращении вокруг Солнца. В своих поисках Кеплер ис­ходил из убеждения, что «в мире правит число», высказанного еще Пифагором. Он искал соотно­шения между различными величи­нами, характеризующими движе­ние планет, размеры орбит, период обращения, скорость. Кеп­лер действовал фактически всле­пую, чисто эмпирически.

Тихо Браге При построении орбиты Марса Кеплер воспользовался собственными наблюдениями планеты, а также многолетними определениями координат и конфигураций Марса, проведёнными его учителем Тихо Браге. Иоганн Кеплер

Орбиту Земли Кеплер считал (в первом приближении) окружностью, что не противоречило наблюдениям. Построение орбиты Марса Кеплером Пусть нам известно угловое расстояние Марса от точки весеннего равноденствия во время одного из противостояний планеты (α 1 ), где Т 1 и М 1 – положения Земли и Марса на орбите. Спустя 687 суток (звездный период обращения Марса) планета придет в ту же точку своей орбиты. Земля в этот момент находится в точке Т 2, и, следовательно, угол α 2 есть прямое восхождение Марса. Повторив подобные операции для нескольких других противостояний Марса, Кеплер получил еще целый ряд точек и, проведя по ним плавную кривую, построил орбиту планеты.

Иоганн Кеплер Орбиту Земли Кеплер считал (в первом приближении) окружностью, что не противоречило наблюдениям. В ходе построения орбиты планеты Марс Кеплер был поставлен перед необходимостью сделать выбор одного из двух возмож­ных решений: 1)считать, что орбита Марса представляет со­бой окружность, и допустить, что на некоторых участках орбиты вычисленные координаты планеты расходятся с на­блюдениями (из-за ошибок наблюдений) на 8'; 2)считать, что наблюдения таких ошибок не содержат, а орбита не является окружностью. Будучи уверенным в точности наблюдений Ти­хо Браге, Кеплер выбрал второе решение.

Кеплер установил, что орбита Марса не окружность, а кривая, которая называется эллипсом, при этом Солнце не располагается в центре эллипса. Эллипс – кривая, у которой сумма расстояний от любой точки до его фокусов есть величина постоянная. Иоганн Кеплер

Иллюстрация первого закона Кеплера на примере движения спутников Земли Каждая планета обращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце. Первый закон Кеплера Большая полуось характеризует размер орбиты планеты. Перигелий – ближайшая к Солнцу точка орбиты. Афелий – наиболее удалённая от Солнца точка орбиты.

Второй закон Кеплера Радиус-вектор планеты за равные промежутки времени описывает равные площади. Иллюстрация второго закона Кеплера на примере движения спутников Земли По мере приближения планеты к Солнцу возрастает ее скорость – увеличивается кинетическая энергия, но вследствие уменьшения расстояния до Солнца уменьшается энергия потенциальная. Согласно закону сохранения энергии, полная механическая энергия замкнутой системы тел, между которыми действуют силы тяготения, остается неизменной при любых движениях тел этой системы. Поэтому сумма кинетической и потенциальной энергий планеты, которая движется вокруг Солнца, неизменна во всех точках орбиты и равна полной энергии.

Иллюстрация третьего закона Кеплера на примере движения спутников Земли Квадраты звёздных периодов обращения планет относятся между собой как кубы больших полуосей их орбит. Третий закон Кеплера

Иоганн Кеплер «То, что 16 лет тому назад я решил искать, наконец найдено, и это открытие превзошло все мои самые смелые ожидания...» Иоганн Кеплер Третий закон позволяет вычислить относительные расстояния планет от Солнца, используя при этом уже известные периоды их обращения вокруг Солнца. Не нужно определять расстояние от Солнца каждой из них, достаточно измерить расстояние от Солнца хотя бы одной планеты. Величина большой полуоси земной орбиты – астрономическая единица (а.е.) – стала основой для вычисления всех остальных расстояний в Солнечной системе.

Задача. Противостояния некоторой планеты повторяются через два года. Чему равна большая полуось её орбиты? Какая конфигурация планет соответствует задаче?

Вопросы (с. 62) 1. Сформулируйте законы Кеплера. 2. Как меняется скорость планеты при ее перемещении от афелия к перигелию? 3. В какой точке орбиты планета обладает максимальной кинетической энергией; максимальной потенциальной энергией?

Домашнее задание 1)§ 12. 2) Упражнение Марс в 1,5 раза дальше от Солнца, чем Земля. Какова продолжительность года на Марсе? Орбиты планет считать круговыми. 2. Синодический период малой планеты 500 суток. Определите большую полуось ее орбиты и звездный период обращения.

Воронцов-Вельяминов Б.А. Астрономия. Базовый уровень. 11 кл. : учебник/ Б.А. Воронцов-Вельяминов, Е.К.Страут. - М.: Дрофа, – 238 с CD-ROM «Библиотека электронных наглядных пособий «Астрономия, 9-10 классы». ООО «Физикон» gif jpg png jpg jpg gif gif