Треугольник

Презентация:



Advertisements
Похожие презентации
Три точки соединенные тремя отрезками образуют фигуру, называемую треугольником.
Advertisements

По сторонам: 1.Разносторонний 2.Равносторонний 3.Равнобедренный По углам: 1.Остроугольный 2.Прямоугольный 3.Тупоугольный.
Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется Отрезок, соединяющий вершину треугольника с серединой противоположной.
Треугольники. Основные понятия темы: Треугольник и его элементы. Равные треугольники. Виды треугольников. Медиана. Биссектриса. Высота.
Треугольники Треугольники Выполнила Ибраимова Акмарал Ученица 7«Б» класса.
Мы изучили треугольники!. Геометрия (наука, изучающая геометрические фигуры) Стереометрия (наука изучающая свойства фигур в пространстве) Планиметрия.
Геометрия Подготовила: Усманова Мадина ученица 7 «В» класса.
Работу выполнила: ученица 7 класса МБОУ Сарасинской СОШ Алтайского района Дьяченко Татьяна Учитель: Мордовских Надежда Васильевна МБОУ Сарасинская СОШ.
Подготовил Белов Олег Медианы, биссектрисы и высоты треугольника.
Медианы, биссектрисы и высоты треугольника. МЕДИАНА Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой.
Медиана, биссектриса, высота треугольника. Теорема: Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой и причем только один.
Медиана, биссектриса, высота треугольника. Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Презентация к исследовательской работе. Три признака равенства треугольников Подготовила ученица 10 класса СОШ 19 г. Тимашевска Коваленко Елена. Руководитель:
Треугольник Равносторонний Разносторонний Равнобедренный Прямоугольный Тупоугольный остроугольный Полупрямая Биссектриса Перпендикуляр Отрезок угол.
Туляева А.Л.. Равнобедренный Равносторонний Разносторонний.
© Жикина Т.Н. Учитель математики гимназия 49 СПб, класс Геометрия.
Что означает выражение С 1 С 1 В 1 В 1 А 1 А 1 С В А.
ТреугольникиТреугольник и его элементы Геометрическая фигура, которая состоит из трех точек не лежащих на одной прямой и отрезков их соединяющих называется.
Треугольники ГЕОМЕТРИЯ 7 КЛАСС Областной детский санаторий г. Грайворона.
Повторение главы «Треугольники» МОУ Халдинская средняя общеобразовательная школа Селтинского района Удмуртской Республики Учитель:Эсенбаева Ольга Александровна.
Транксрипт:

ТРЕУГОЛЬНИК Абдулаев Юсуф «7Е»

Определение треугольника Треугольник геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки сторонами треугольника. Стороны треугольника образуют в вершинах треугольника три угла, поэтому треугольник можно также определить как многоугольник, у которого имеется ровно три угла. Треугольник является одной из важнейших геометрических фигур, повсеместно используемых в науке и технике, поэтому глубокое исследование его свойств проводилось начиная с глубокой древности.

Классификация треугольников Треугольники классифицируются по 2 признакам: 1. По углам : Остроугольный Прямоугольный Тупоугольный 2. По сторонам: Разносторонний Равнобедренный Равносторонний

СВОЙСТВА ТРЕУГОЛЬНИКА

Признаки равенства треугольника 1. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. 2. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. 3. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Медианы, биссектрисы и высоты Медиа́на треугольника (лат. mediāna средняя) отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок. Все три медианы треугольника пересекаются в одной точке. Биссектрисой (биссéктором) треугольника, проведённой из данной вершины, называют отрезок, соединяющий эту вершину с точкой на противоположной стороне и делящий угол при данной вершине пополам. Биссектрисы треугольника тоже пересекаются в одной точке. Высотой треугольника, проведённой из данной вершины, называется перпендикуляр, опущенный из этой вершины на противоположную сторону или её продолжение. И высоты пересекаются в одной точке. Медиана, биссектриса и высота равнобедренного треугольника, опущенные на основание, совпадают. Верно и обратное: если биссектриса, медиана и высота, проведённые из одной вершины, совпадают, то треугольник равнобедренный.

СПАСИБО ЗА ВНИМАНИЕ! Материал взят из Википедии