Мыслить последовательно, судить доказательно, опровергать неправильные выводы должен уметь всякий: физик и поэт, тракторист и химик. Э.Кольман В математике.

Презентация:



Advertisements
Похожие презентации
Арифметическая прогрессия - числовая последовательность определяемая условиями: 1)а 1= а, 2) а n-1 +d (n = 2, 3, 4, …) (d - разность арифметической прогрессии).
Advertisements

Г ЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ 2; 2 2 ; 2 3 ; 2 4 ; 2 5 ; 2 6 ; …. 1; 3; 9; 27; 81; …. геометрическая прогрессия. b n+1 =d n ·g Геометрической прогрессией.
Урок-конференция «Числовые последовательност и». Числовые последовательности Функцию вида y=f(x), где xєΝ, называют функцией натурального аргумента или.
1 МОУ Кесемская СОШ Паутова Т.В. Прогрессия Арифметическая Геометрическая 2 Бесконечно убывающая геометрическая.
Устная работа 1. Указать верное определение геометрической прогрессии. а) Последовательность (вn) называется геометрической прогрессией, если для любого.
Определение геометрической прогрессии. Формула n-го члена геометрической прогрессии Урок алгебры в 9 классе. Учитель Каримова Э. А. МОУ Худайбердинская.
Арифметическая прогрессия. Формула п го члена арифметической прогрессии.
Сумма бесконечной геометрической прогрессии. Геометрической прогрессией назы вается последовательность отличных от нуля чисел, каждый член которой, начиная.
Прогрессии Арифметическая Числовая последовательность, каждый член которой, начиная со второго, равен предшествующему члену, сложенному с одним и тем же.
9 класс Новосёлова Е.А. МОУ «Усть-Мосихинская СОШ»
Арифметическая и геометрическая прогрессии «Все познается в сравнении»
Последовательности 9 класс МОУ СОШ 4 г. Заполярный.
К л а с с н а я р а б о т а. Геометрическая прогрессия К л а с с н а я р а б о т а. Геометрическая прогрессия.
Арифметическая прогрессия. 1. Какой член прогрессии а 1, а 2, а 3,…, аn,… а) следует за членом а 199 ; а 300; аn; а 2n+1;.. б) предшествует члену а 63;
Что общего имеют Млечный Путь Морская раковина Ананас Последовательность 1, 1, 2, 2, 3, 3, 4,… ??
Классная работа. Выявите закономерность и задайте последовательность рекуррентной формулой 1) 1, 2, 3, 4, 5, … 2) 2, 5, 8, 11, 14,… 3) 8, 6,
9 класс Новосёлова Е.А. МОУ «Усть-Мосихинская СОШ»
Является ли последовательность геометрической прогрессией? (г.п.) Если да, то найдите её знаменатель. 1. 3; 3; 3; … 2. 2; 0; 0; 0; 3. 3; 6; 12; 24; … 4.
Определение арифметической прогрессии Формула n-го члена арифметической прогрессии Характеристическое свойство арифметической прогрессии Сумма первых n.
А РИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ 1;5; 9; 13; 17; 21; …. -1; -3; -7; -9; -11; …. Арифметическая прогрессия. a n+1 =a n +d Арифметической прогрессией называется.
Транксрипт:

Мыслить последовательно, судить доказательно, опровергать неправильные выводы должен уметь всякий: физик и поэт, тракторист и химик. Э.Кольман В математике следует помнить не формулы, а процессы мышления. В.П.Ермаков Легче найти квадратуру круга, чем перехитрить математика. Огастес де Морган Какая наука может быть более благородна, более восхитительна, более полезна для человечества, чем математика? Франклин

10 класс

I. Арифметическая и геометрическая прогрессии. Вопросы 1. Определение арифметической прогрессии. Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом. 2. Формула n-го члена арифметической прогрессии. 3. Формула суммы первых n членов арифметической прогрессии. 4. Определение геометрической прогрессии. Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число 5. Формула n-го члена геометрической прогрессии. 6. Формула суммы первых n членов геометрической прогрессии.

II. Арифметическая прогрессия. Задания 1. Арифметическая прогрессия задана формулой a n = 7 – 4n Найдите a 10. (-33) 2. В арифметической прогрессии a 3 = 7 и a 5 = 1. Найдите a 4. (4) 3. В арифметической прогрессии a 3 = 7 и a 5 = 1. Найдите a 17. (-35) 4. В арифметической прогрессии a 3 = 7 и a 5 = 1. Найдите S 17. (-187)

II. Геометрическая прогрессия. Задания 5. Для геометрической прогрессии найдите пятый член 6. Для геометрической прогрессии найдите n-й член. 7. В геометрической прогрессии b 3 = 8 и b 5 = 2. Найдите b 4. (4) 8. В геометрической прогрессии b 3 = 8 и b 5 = 2. Найдите b 1 и q. 9. В геометрической прогрессии b 3 = 8 и b 5 = 2. Найдите S 5. (62)

определение: Геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы.

Задача 1 Является ли последовательность бесконечно убывающей геометрической прогрессией, если она заданна формулой: Решение: а) данная геометрическая прогрессия является бесконечно убывающей. б) данная последовательность не является бесконечно убывающей геометрической прогрессией.

Сумма бесконечно убывающей геометрической прогрессии есть предел последовательности S 1, S 2, S 3, …, S n, …. Например, для прогрессии имеем Так как Сумму бесконечно убывающей геометрической прогрессии можно находить по формуле

Выполнение заданий 1. Найти сумму бесконечно убывающей геометрической прогрессии с первым членом 3, вторым 0, ;14;учебник, стр (1;3); 16(1;3)18(1;3); 4. 19;20.

С какой последовательностью сегодня познакомились? Дайте определение бесконечно убывающей геометрической прогрессии. Как доказать, что геометрическая прогрессия является бесконечно убывающей? Назовите формулу суммы бесконечно убывающей геометрической прогрессии. Вопросы

На дом: 1. Читать § 2 (с ) 2. 15(2;4), 16(2;4), 18(2;4)

Известный польский математик Гуго Штейнгаус шутливо утверждает, что существует закон, который формулируется так: математик сделает это лучше. А именно, если поручить двум людям, один из которых математик, выполнение любой незнакомой им работы, то результат всегда будет следующим: математик сделает ее лучше. Гуго Штейнгаус