Уравнение прямой в пространстве Поскольку прямую в пространстве можно рассматривать как линию пересечения двух плоскостей, то одним из способов аналитического.

Презентация:



Advertisements
Похожие презентации
Уравнение прямой в пространстве Поскольку прямую в пространстве можно рассматривать как линию пересечения двух плоскостей, то одним из способов аналитического.
Advertisements

Уравнение прямой Теорема. Прямая на плоскости задается уравнением ax + by + c = 0, где a, b, c - некоторые числа, причем a, b одновременно не равны нулю.
Уравнение прямой Теорема. Прямая на плоскости задается уравнением ax + by + c = 0, где a, b, c - некоторые числа, причем a, b одновременно не равны нулю.
§ 13. Прямая в пространстве 1. Уравнения прямой в пространстве Пусть A 1 x+B 1 y+C 1 z+D 1 =0 и A 2 x+B 2 y+C 2 z+D 2 =0 – уравнения любых двух различных.
Аналитическая геометрия Аналитическая геометрия – раздел геометрии, в котором простейшие линии и поверхности (прямые, плоскости, кривые и поверхности второго.
Уравнение плоскости в пространстве Теорема. Плоскость в пространстве задается уравнением где a, b, c, d - действительные числа, причем a, b, c одновременно.
Аналитическая геометрия Часть 2 Геометрия в пространстве.
Глава III. Аналитическая геометрия Аналитическая геометрия – раздел геометрии, в котором простейшие линии и поверхности (прямые, плоскости, кривые и поверхности.
§ 4. Прямая в пространстве 1. Уравнения прямой в пространстве Пусть A 1 x+B 1 y+C 1 z+D 1 =0 и A 2 x+B 2 y+C 2 z+D 2 =0 – уравнения любых двух различных.
Уравнение плоскости Теорема. Плоскость в пространстве задается уравнением где a, b, c, d - действительные числа, причем a, b, c одновременно не равны нулю.
3. Взаимное расположение плоскостей В пространстве две плоскости могут: а) быть параллельны, б) пересекаться. Пусть уравнения плоскостей λ 1 и λ 2 имеют.
Глава III. Аналитическая геометрия Аналитическая геометрия – раздел геометрии, в котором простейшие линии и поверхности (прямые, плоскости, кривые и поверхности.
Плоскость и прямая в пространстве Лекция 10. Определение. Уравнением поверхности в пространстве называется такое уравнение между переменными которому.
Линейная алгебра и аналитическая геометрия Лектор Ефремова О.Н г. Тема: Прямая в пространстве.
Прямая в пространстве Каноническое уравнение прямой Параметрическое уравнение прямой Уравнение прямой, как линии пересечения двух плоскостей Угол между.
Плоскость и прямая в пространстве Лекции 10, 11. Определение. Уравнением поверхности в пространстве называется такое уравнение между переменными которому.
Прямая в пространстве. Общее уравнение прямой Прямая линия в пространстве определяется как линия пересечения двух плоскостей.
Тема 5 «Прямая на плоскости» Кафедра математики и моделирования Старший преподаватель Г.В. Аверкова Курс «Высшая математика» Вывод общего уравнения прямой.
Аналитическая геометрия Лекции 8,9. Прямая на плоскости.
§ 3. Плоскость 1. Общее уравнение плоскости и его исследование ЗАДАЧА 1. Записать уравнение плоскости, проходящей через точку M 0 (x 0 ;y 0 ;z 0 ), перпендикулярно.
Транксрипт:

Уравнение прямой в пространстве Поскольку прямую в пространстве можно рассматривать как линию пересечения двух плоскостей, то одним из способов аналитического задания прямой в пространстве является задание с помощью системы из двух уравнений задающих пару пересекающихся плоскостей.

Уравнение прямой в пространстве Прямую, проходящую через точку A 0 (x 0,y 0,z 0 ) с направляющим вектором (a,b,c) можно задавать параметрическими уравнениями В случае, если прямая в пространстве задается двумя точками A 1 (x 1,y 1,z 1 ), A 2 (x 2,y 2,z 2 ), то, выбирая в качестве направляющего векто­ ра вектор (x 2 -x 1,y 2 -y 1,z 2 -z 1 ) и в качестве точки А 0 точку А 1, получим следующие уравнения

Канонические уравнения прямой в пространстве 1. Прямая задана точкой и направляющим вектором: 2. Прямая задана двумя точками:

Определение координат направляющего вектора Пусть прямая задана с помощью двух пересекающихся плоскостей:

Упражнение 1 Какими уравнениями задаются координатные прямые? Ответ: Ось Ox Ось Oy Ось Oz

Упражнение 2 Напишите параметрические и канонические уравнения прямой, проходящей через точку А(1,-2,3) с направляющим вектором, имеющим координаты (2,3,-1). Ответ:

Упражнение 3 Напишите параметрические и канонические уравнения прямой, проходящей через точки А 1 (-2,1,-3), А 2 (5,4,6). Ответ:

Упражнение 4 Напишите параметрические уравнения прямой, проходящей через точку M(1,2,-3) и перпендикулярную плоскости x + y + z + 1 = 0. Ответ:

Упражнение 5 В каком случае параметрические уравнения определяют перпендикулярные прямые? Ответ: Если выполняется равенство a 1 a 2 +b 1 b 2 +c 1 c 2 =0.

Упражнение 6 Определите взаимное расположение прямой, задаваемой уравнениями и плоскости, задаваемой уравнением x – 3y + z +1 = 0. Ответ: Параллельны

Упражнение 7 Найдите координаты точки пересечения плоскости 2x – y + z – 3 = 0 и прямой, проходящей через точки A(-1,0,2) и B(3,1,2). Ответ:

Упражнение 8 Определите взаимное расположение прямых, задаваемых уравнениями Ответ: Перпендикулярны.

Упражнение 9 Точка движется прямолинейно и равномерно в направлении вектора (1,2,3). В начальный момент времени t = 0 она имела координаты (-1,1,-2). Какие координаты она будет иметь в момент времени t=4? Ответ: (3,9,10).

Упражнение 10 Параметрические уравнения движения материальной точки в пространстве имеют вид Найдите скорость. Ответ:

Упражнение 11 Точка движется прямолинейно и равномерно. В момент времени t = 2 она имела координаты (3,4,0), а в момент времени t = 6 - координаты (2,1,3). Какова скорость движения точки? Ответ:

Упражнение 12 Прямая в пространстве задана параметрическими уравнениями Напишите параметрические уравнения прямых, симметричных данной относительно координатных плоскостей. Ответ: