Изобразите сечение правильной треугольной призмы ABCA 1 B 1 C 1, все ребра которой равны 1, проходящее через середины ребер AA 1, BB 1, CC 1. Найдите его.

Презентация:



Advertisements
Похожие презентации
1. Изобразите сечение единичного куба A…D 1, проходящее через вершины A, B, C 1. Найдите его площадь. Ответ..
Advertisements

Подготовка к ЕГЭ. В единичном кубе A...D1 найдите расстояние от точки A до прямой BD1. Ответ:
Изобразите сечение единичного куба A…D 1, проходящее через вершины A, B, C 1. Найдите его площадь. Ответ..
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Параллельные прямые.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
ЗАДАЧА 1 Дано: ABCDA 1 B 1 C 1 D 1 – куб AB=1 K – середина BB 1 N – середина CC 1 E – середина A 1 B 1 KNE – плоскость сечения Найти: Sсеч.
Угол между прямой и плоскостью Найдем угол между прямой AB, направление которой задается вектором, и плоскостью α, заданной уравнением ax + by + cz + d.
Задачи на нахождение площади сечения многогранника Подготовка к решению задач ЕГЭ Автор: Ингинен Ольга Вячеславовна, учитель математики, МОУ «СОШ 6» г.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Параллельность прямых Для отношения.
Расстояние от точки до плоскости Напомним, что расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из данной точки на данную.
РАССТОЯНИЕ МЕЖДУ ТОЧКОЙ И ПЛОСКОСТЬЮ В ПРОСТРАНСТВЕ Расстоянием между точкой и плоскостью в пространстве называется длина перпендикуляра, опущенного из.
1 Подготовка к ЕГЭ Задания С 2. Углом между наклонной и плоскостью называется угол между этой наклонной и ее проекцией на данную плоскость. Прямая, перпендикулярная.
ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости. Теорема.
Найдите объем многогранника, вершинами которого являются вершины A, B, C, D, A 1 единичного куба ABCDA 1 B 1 C 1 D 1. Ответ: Искомым многогранником является.
Уметь выполнять действия с геометрическими фигурами, координатами и векторами.
Транксрипт:

Изобразите сечение правильной треугольной призмы ABCA 1 B 1 C 1, все ребра которой равны 1, проходящее через середины ребер AA 1, BB 1, CC 1. Найдите его площадь. Ответ. 0,5.

Изобразите сечение правильной треугольной призмы ABCA 1 B 1 C 1, все ребра которой равны 1, проходящее через вершины B, B 1 и середину ребра AC. Найдите его площадь. Ответ..

Изобразите сечение правильной треугольной призмы ABCA 1 B 1 C 1, все ребра которой равны 1, проходящее через вершины A, B и середину ребра A 1 C 1. Найдите его площадь. Ответ..

Изобразите сечение правильной треугольной призмы ABCA 1 B 1 C 1, все ребра которой равны 1, проходящее через середины ребер AB, BC и CC 1. Найдите его площадь. Ответ..

Изобразите сечение правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, проходящее через вершины A, C и C 1. Найдите его площадь. Ответ..

Изобразите сечение правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, проходящее через вершины A, D и D 1. Найдите его площадь. Ответ. 2.

Изобразите сечение правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, проходящее через середины ребер BC, EF и B 1 C 1. Найдите его площадь. Ответ..

Изобразите сечение правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, проходящее через середины ребер AB, BC и A 1 B 1. Найдите его площадь. Ответ..

Изобразите сечение правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, проходящее через середины ребер AB, CD и A 1 B 1. Найдите его площадь. Ответ. 1,5.

Изобразите сечение правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, проходящее через вершины D, D 1 и середину ребра EF. Найдите его площадь. Ответ..

Изобразите сечение правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, проходящее через вершины A, A 1 и середину ребра CD. Найдите его площадь. Ответ..

Изобразите сечение правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, проходящее через вершины A, C и D 1. Найдите его площадь. Ответ..

Изобразите сечение правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, проходящее через вершины A, D и C 1. Найдите его площадь. Ответ..

Изобразите сечение правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, проходящее через вершины A, B и D 1. Найдите его площадь. Ответ. 3.

Изобразите сечение правильной треугольной призмы ABCA 1 B 1 C 1, все ребра которой равны 1, проходящее через середины ребер AB, AA 1 и A 1 C 1. Найдите его площадь. Ответ..