МЕТОД НАИМЕНЬШИХ КВАДРАТОВ. СТАТИСТИЧЕСКАЯ ОЦЕНКА.

Презентация:



Advertisements
Похожие презентации
Линейная модель парной регрессии и корреляции. 2 Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального.
Advertisements

Метод наименьших квадратов В математической статистике методы получения наилучшего приближения к исходным данным в виде аппроксимирующей функции получили.
Лекция 2 Часть I: Многомерное нормальное распределение, его свойства; условные распределения Часть II: Парная линейная регрессия, основные положения.
Регрессионный анализ. Основная особенность регрессионного анализа: при его помощи можно получить конкретные сведения о том, какую форму и характер имеет.
ЛЕКЦИЯ 8 КОРРЕЛЯЦИОННО- РЕГРЕССИОННЫЙ АНАЛИЗ. МОДЕЛИРОВАНИЕ СВЯЗЕЙ.
Метод наименьших квадратов. Количественный анализ Проведение количественного анализа, как правило, включает в себя построение графика по данным, найденным.
В задачу регрессионного анализа входит исследование остаточных величин. Исследование остаточных величин.
P4P4 X X1X1 X2X2 X3X3 X4X4 Разница между действительным и оцененным значением Y называется остатком. P3P3 P2P2 P1P1 R1R1 R2R2 R3R3 R4R4 ( остаток ) e1e1.
Метод наименьших квадратов УиА 15/2 Айтуар А.. В математической статистике методы получения наилучшего приближения к исходным данным в виде аппроксимирующей.
Лекция 2.1 Линейная регрессионная модель для случая одной объясняющей переменной. Метод наименьших квадратов (МНК)
Анализ случайных величин. Опр. Случайной называется величина, которая в результате опыта может принять то или иное возможное значение, неизвестное заранее,
Оценка неизвестных параметров распределений Точечное оценивание.
Теория статистики Корреляционно-регрессионный анализ: статистическое моделирование зависимостей Часть 1. 1.
Парная линейная корреляция. Метод наименьших квадратов Задача: найти оценки параметров a и b такие, что остаток в i-ом наблюдении (отклонение наблюдаемого.
Анализ данных Лекция 5 Методы построения математических функций.
Пензенский государственный университет Развитие методов калибровки средств измерений: калибровка в рабочих условиях эксплуатации к.т.н., доцент Ординарцева.
Лекция 1 «Введение». Опр. эконометрика это наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов. Специфической.
Методы оценивания параметров систем эконометрических уравнений.
Кафедра математики и моделирования Старший преподаватель Е.Г. Гусев Курс «Высшая математика» Лекция 15. Тема: Случайные величины и их числовые характеристики.
Эконометрика. Литература Доугерти К. Введение в эконометрику. - 3-е изд. - М.: ИНФРА- М, XIV, 465 с. Доугерти К. Введение в эконометрику. - 3-е.
Транксрипт:

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ. СТАТИСТИЧЕСКАЯ ОЦЕНКА.

СТАТИСТИЧЕСКАЯ ОЦЕНКА Статистической оценкой неизвестного параметра теоретического распределения называют функцию от наблюдаемых случайных величин.

Статистическая оценка - некоторая функция от результатов наблюдений, предназначенная для статистического оценивания неизвестных характеристик и параметров распределения вероятностей. Выделяется случай, когда распределение вероятностей принадлежит какому-либо известному семейству, зависящему от конечного числа параметров.

Метод наименьших квадратов математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.

СУТЬ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ (МНК). Задача заключается в нахождении коэффициентов линейной зависимости, при которых функция двух переменных а и b принимает наименьшее значение. То есть, при данных а и b сумма квадратов отклонений экспериментальных данных от найденной прямой будет наименьшей. В этом вся суть метода наименьших квадратов. Таким образом, решение примера сводится к нахождению экстремума функции двух переменных.

ВЫВОД ФОРМУЛ ДЛЯ НАХОЖДЕНИЯ КОЭФФИЦИЕНТОВ.