Системы счисления Выполнила: Фатхуллаева А.Ш. студентка 126 группы лечебного факультета.

Презентация:



Advertisements
Похожие презентации
УРОК -ПУТЕШЕСТВИЕ В СТРАНУ. Цель нашего урока - Повторение и обобщение знаний по теме Система счисления. - Мы должны усовершенствовать навыки перевода.
Advertisements

Системы счисления Учебная презентация по информатике, Грязнова Елена Владиславовна, учитель информатики МСОШ, пгт. Мама.
Системы счисления. Что такое система счисления? Система счисления – это совокупность правил записи чисел с помощью определенного набора символов.
«Системы счисления». Что такое система счисления? Система счисления – это способ наименования и обозначения чисел. десятичная двоичная восьмеричная шестнадцатеричная.
Система счисления – это совокупность правил записи чисел с помощью определенного набора символов. Для записи чисел могут использоваться не только цифры,
Системы счисления 10 класс. Что такое система счисления? Система счисления – это способ наименования и обозначения чисел десятичная двоичная восьмеричная.
Урок обобщающего повторения по теме: «Системы счисления» Цели урока: 1. Обобщить и закрепить знания; 2. Отработать практические навыки перевода чисел в.
Подходы к понятию и измерению информации Цели урока: 1. Обобщить и закрепить знания; 2. Отработать практические навыки перевода чисел в различные СС и.
Системы счисления Учебная презентация по информатике, ФСПО КамчатГТУ, преподаватель: Шугалеева Т.И. 1.
Системы счисления. Что такое система счисления? Система счисления – это способ наименования и обозначения чисел. десятичная двоичная восьмеричная шестнадцатеричная.
Системы счисления Учебная презентация по информатике для 10 класса.
Системы счисления Учебная презентация по информатике, Грязнова Елена Владиславовна, учитель информатики МСОШ, пгт. Мама.
Системы счисления, используемые в компьютере. Борисов В.А. КАСК – филиал ФГБОУ ВПО РАНХ и ГС Красноармейск 2011 г.
Шестидесятеричная вавилонская система – первая известная система счисления, основанная на позиционном принципе Числа в этой системе счисления составлялись.
Системы счисления Информатика и ИКТ 8 класс Гимназия 1 г. Новокуйбышевска Учитель информатики: Красакова О.Н.
Муниципальное общеобразовательное учреждение Гимназия 1 Учитель информатики: Кондакова Л. В. Липецк А класс.
Это совокупность примеров и правил для обозначения и именования чисел.
Системы счисления Основные понятия. Информация о презентации Цель: изучение материала по теме «Системы счисления» После просмотра учащиеся должны знать.
Представление числовой информации с помощью систем счисления.
СИСТЕМЫ СЧИСЛЕНИЯ "Все есть число", говорили пифагорийцы, подчеркивая необычайно важную роль чисел в практической деятельности.
Транксрипт:

Системы счисления Выполнила: Фатхуллаева А.Ш. студентка 126 группы лечебного факультета

Система счисления – это способ наименования и обозначения чисел десятичная двоичная восьмеричная шестнадцатеричная и т.д. Системы счисления позиционные непозиционные римская История СС

Цифра. Что это? Знаки (символы), используемые в СС для обозначения чисел, называются цифрами

Римская система счисления Является непозиционной, т.е. каждый символ обозначает всегда одно и тоже число; Цифры обозначаются латинскими буквами: I, V, X, L, C, D, M (1, 5, 10, 50, 100, 500, 1000) Например: XXX – 30; XLI - 41

Позиционные системы счисления Основанием системы может быть любое натуральное число, большее единицы; Основание ПСС – это количество цифр, используемое для представления чисел; Значение цифры зависит от ее позиции, т.е. одна и та же цифра соответствует разным значениям в зависимости от того, в какой позиции числа она стоит; Например: 888: 800; 80; 8 Любое позиционное число можно представить в виде суммы степеней основания системы.

Десятичная СС Основание системы – число 10; Содержит 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; Любое десятичное число можно представить в виде суммы степеней числа 10 – основания системы;

Двоичная СС Основание системы – 2; Содержит 2 цифры: 0; 1; Любое двоичное число можно представить в виде суммы степеней числа 2 – основания системы; Примеры двоичных чисел: ; ;

Правила перевода 1. Из десятичной СС в двоичную СС: Разделить десятичное число на 2. Получится частное и остаток. Частное опять разделить на 2. Получится частное и остаток. Выполнять деление до тех пор, пока последнее частное не станет меньшим 2. Записать последнее частное и все остатки в обратном порядке. Полученное число и будет двоичной записью исходного десятичного числа.

2. Перевод из двоичной системы счисления в десятичную Для перехода из двоичной системы счисления в десятичную необходимо двоичное число представить в виде суммы произведений цифр числа на основание (2) в степени, соответствующей месту цифры и найти ее десятичное значение. Пример:

Восьмеричная СС Основание системы – 8; Содержит 8 цифры: 0; 1; 2; 3; 4; 5; 6; 7; Любое восьмеричное число можно представить в виде суммы степеней числа 8 – основания системы; Примеры восьмеричных чисел: ; ;

Шестнадцатеричная СС Основание системы – 16; Содержит 16 цифр: от 0 до 9; A; B; C; D; E; F; Любое шестнадцатеричное число можно представить в виде суммы степеней числа 16 – основания системы; Примеры шестнадцатеричных чисел: 21AF3 16 ; B09D 16 ;

Правило перевода целых чисел из десятичной системы счисления в p-i Разделить десятичное число на p. Получится частное и остаток. Выполнять деление до тех пор, пока последнее частное не станет меньше p. Записать остатки в обратном порядке. Полученное число и будет p-i записью исходного десятичного числа.

Правило перевода дробных чисел из десятичной системы счисления в p-i Умножить десятичную дробь на p. Целую часть выписать, с дробной продолжить умножение до тех пор, пока она не станет равной 0 или не выделится в период Выписать целые части сверху-вниз. Полученное число и будет p-i записью исходного десятичного числа.

Правило перевода из p-i системы счисления в q-i систему счисления Для перевода из p-i системы счисления в q-i число надо сначала перевести из p-i системы счисления в 10 систему счисления (развернутая форма числа), а затем из 10СС в q-i (деление целой и умножение дробной части) 123,54 7 3СС 123,2 7 = 1* * *7 0 +2* = \7=66, : 3 = : 3 = : 3 = : 3 = ,26 * 3 = 0,78 0 0,78 * 3 = 2,34 2 0,34 * 3 = 1, * 3 = 0, ,2 7 = 111,021 73

Связь систем счисления 10-ая 2-ая 8-ая 16-ая A B C D E F

Переводы в системах счисления с основанием кратным 2

Правило перевода из двоичной системы счисления в восьмеричную Разбить двоичное число на триады справа налево (целая часть) и слева направо (дробная часть) от запятой (по три цифры). Заменить каждую триаду соответствующей восьмеричной цифрой.

Правило перехода из двоичной системы счисления в шестнадцатеричную Разбить двоичное число на тетрады (по четыре цифры) справа налево для целой части и слева-направо для дроби. Заменить каждую тетраду соответствующей шестнадцатеричной цифрой.

Правило перевода из восьмеричной системы счисления в двоичную Каждую восьмеричную цифру заменить соответствующим двоичным кодом по три цифры в каждом

Правило перевода из шестнадцатеричной системы счисления в двоичную Каждую шестнадцатеричную цифру заменить двоичным кодом по четыре цифры в каждом

СПАСИБО ЗА ВНИМАНИЕ!