Исаак Ньютон ( ) « Общее искусство знаков представляет чудесное пособие, так как оно разгружает воображение… Следует заботиться о том, чтобы.

Презентация:



Advertisements
Похожие презентации
ПРИМЕНЕНИЕ ИНТЕГРАЛОВ ДЛЯ РЕШЕНИЯ ФИЗИЧЕСКИХ ЗАДАЧ.
Advertisements

дифференцирование интегрирование Обозначения: f(x) – функция, F(x) – первообразная. Функция F называется первообразной для функции f, если выполняется.
Учитель математики МКОУ СОШ5 Цуканова Зоя Ивановна.
И его применение. Определение Пусть на отрезке [а;b] оси Ох задана непрерывная функция f(x), не имеющая на нем знака. Фигуру, ограниченную графиком этой.
Первообразная Урок 63 По данной теме урок 1 Классная работа
План лекции: 1. Методы интегрирования(продолжение) 2. Определенный интеграл.
Лектор Пахомова Е.Г г. Математический анализ Раздел: Определенный интеграл Тема: Применение определенного интеграла. Приближенное вычисление определенного.
Применение интеграла при решении физических задач Выполнили: учитель физики Носенко Л.В. учитель математики Усенко С.Д. сош 35 г.Николаева 2012 г
1.Что называется первообразной? Функция F называется первообразной для функции f на заданном промежутке, если для всех х из этого промежутка F (x)= f(x).
ПЕРВООБРАЗНАЯ, ИНТЕГРАЛ.. Дифференцируемая функция F (x) называется первообразной для функции f (x) на заданном промежутке, если для всех х из этого промежутка.
МАТЮХИНА ИРИНА АЛЕКСАНДРОВНА УЧИТЕЛЬ МАТЕМАТИКИ МБОУ СОШ 29 С УГЛУБЛЕННЫМ ИЗУЧЕНИЕМ ОТДЕЛЬНЫХ ПРЕДМЕТОВ Г.СТАВРОПОЛЯ
Урок - Практикум Применение первообразной и интеграла при решении практических задач в геометрии, физике, биологии.
Применение производной в физике и технике. Механический смысл производной Механическое истолкование производной было впервые дано И. Ньютоном. Оно заключается.
Интегрирование. Если точка движется с постоянной скоростью, то она равна отношению пути ко времени, за который этот путь пройден Если тело движется ускоренно,
Твердое тело – это система материальных точек, расстояния между которыми не меняются в процессе движения. При вращательном движении твердого тела все его.
Площадь криволинейной трапеции
Презентация к уроку (алгебра, 11 класс) на тему: Презентация по алгебре 11 класс "Первообразная. Интеграл"
Определённый интеграл.. Геометрические приложения определённого интеграла. Вычисление площадей плоских фигур. x y 0ab y = f(x) S x y 0 ab S.
Механика вращательного движения Пусть - проведенный из неподвижной в некоторой инерциальной системе отсчета точки О радиус-вектор материальной точки, к.
Транксрипт:

Исаак Ньютон ( )

« Общее искусство знаков представляет чудесное пособие, так как оно разгружает воображение… Следует заботиться о том, чтобы обозначения были удобны для открытий. Обозначения коротко выражают и отображают сущность вещей. Тогда поразительным образом сокращается работа мысли.» Лейбниц

Найдём объём тела, ограниченного поверхностью вращения линии вокруг оси (при ). Для вычисления объёма тела вращения применим формулу: Имеем:

А) Вычисление работы движущегося тела Б) Вычисление перемещения движущегося тела В) Вычисление массы тела Г) Вычисление электрического заряда в проводнике с током

А) сделать чертеж, соответствующий условию задачи, Б) выбрать систему координат, В) выбрать независимую переменную, Г) выбрать формулу классической физики, соответствующую условию задачи, Д) найти дифференциал искомой величины на основании этой формулы, Е) установить промежуток интегрирования, Ж) вычислить интеграл, т.е. найти искомую величину.

Пусть точка движется со скоростью V(t). Нужно найти путь s, пройденный точкой от момента t=a до момента t=b. Обозначим s(t) путь, пройденный точкой за время t от момента a. Тогда s(t)=V(t), т.е. s(t) – первообразная для функции V(t). Поэтому по формуле Ньютона - Лейбница найдём: s= V(t)dt. Например, если точка движется со скоростью V(t)=2t+1(м/с), то путь, пройденный точкой за первые 10 с, по формуле равен S= 10 (2t+1)dt = (t 2 + t)| 10 = 110(м)

Пусть тело, рассматриваемое как материальная точка, движется по оси O x под действием силы F (x), направленной вдоль оси O x. Вычислим работу силы при перемещении тела из точки x=a в точку x=b. Пусть A (x) – работа данной силы при перемещении тела из точки а в точку x. При малом h силу F на отрезке можно считать постоянной и равной F (x). Поэтому A (x + h) – A (x) =F (x)h, т.е. : A (x + h) – A (x) h F (x) Устремляя h к нулю, получаем, что A (x) = F (x), т.е. A (x) – первообразная для функции F (x). По формуле Ньютона – Лейбница получаем A (b) = F (x) dx, так как A (a) = 0 Итак, работа силы F (x) при перемещении тела из точки a в точку b равна: A (b) = F (x) dx

Капля с начальной массой M падает под действием силы тяжести и равномерно испаряется, теряя массу m. Какова работа силы тяжести за время падения до полного испарения?

Пусть плотность ρ ( x ) стержня с постоянным сечением S зависит от расстояния до начала стержня. Тогда масса стержня равна: где L – длина стержня, а центр масс стержня находится на расстоянии: