Теорема о соотношениях между сторонами и углами треугольника
Теорема В треугольнике против большей стороны лежит больший угол. В С А Дано: АВС, АВ > АС Доказать: С > В Доказательство: 1. Отложим на стороне АВ отрезок АD=АС. 2. Так как АD < АВ, то А – D – В 3. Следовательно 1 является частью С и, значит С > внешний угол ВDС, поэтому 2 > В. 1 = 2 ( АDС- равнобедренный) 5. С > 1, 1= 2, 2 > В, следовательно С > В 2 1 D
Обратная теорема Против большего угла лежит большая сторона В А С Дано: АВС, С > В Доказать: АВ > АС Доказательство: Предположим, что это не так. Тогда: 1) либо АВ = АС; 2)либо АВ < АС. В 1) АВС – равнобедренный; 2) В > C (против большей стороны лежит больший угол ). Противоречие условию: С > В. Предположение неверно, и, следовательно АВ > АС,что и требовалось доказать.
Задача м О СК 1 23 Дано: МОС, М-К-С, КМ=МО. Доказать: а) 1= 3; б) МОС > 3 Решение: 1 является часть угла МОС, значит, 1 < МОС, т.е. МОС > 1. 2 – внешний для ОКС, 2 = 3 + КОС. Значит, 2 > 3. MOD – равнобедренный, следовательно, 1= 2. Значит, 1 > 3, MOC > 3.