Выполнила: студентка 4 го курса Цветкова Анна. Прибор, который позволяет получать сильно увеличенное изображение объектов, используя для их освещения.

Презентация:



Advertisements
Похожие презентации
Электронный микроскоп Выполнила: ученица 11 класса «Б» МОУ СОШ 288 г. Заозерска Якубенко Екатерина.
Advertisements

Люминесцентный анализ Люминесценция – (lumen – свет; escent – суффикс, означает слабое действие) способность некоторых веществ.
Томск, ТПУ, ИГНД, ГЭГХ 1 Лекция 2 Люминесцентный анализ.
Элементы квантовой механики. Основы ядерной физики.
Министерство образования и науки Российской Федерации Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального.
ГБПУЗ ЗДМ «МК 1» ФИЛИАЛ 3 Виды микроскопии Работу выполнила студентка группы ЛВ 13-3: Гирина Е.В.
Электронная и туннельная микроскопия Выполнила : Молодан Юлия У 4-02.
Название предмета: Химия поверхностных явлений, адсорбции и наносистем (ХПЯАиН) Лекция 4 Методы исследования наночастиц и наносистем Преподаватель: Гайнанова.
ЛЕКЦИЯ 14 Электронная микроскопия. Принципиальная схема просвечивающего электронного микроскопа 1 - источник излучения; 2 - конденсор; 3 - объект; 4 -
Электронная и туннельная микроскопия Подготовила: Скуратович А.Г У4-04.
Сканирующая электронная микроскопия. Растровый электронный микроскоп прибор, предназначенный для получения изображения поверхности объекта с высоким (до.
Электронная и туннельная микроскопия Подготовила : Лаврентьева Екатерина У4-01.
История создания микроскопа. Виды микроскопов.
Виды излучений. Виды спектров. Свет- это э/м волна с длиной волны 40мкм – 80мкм.
История микроскопа Нет микроскопа, который бы так увеличивал, как глаза человека, любующегося собой. Александр Поп.
ОБОРУДОВАНИЕ НАНОТЕХНОЛОГИИ В начале ХХ века появилась идея изучать вещество, не увеличивая визуально исследуемую площадь его поверхности, а как бы трогая.
Электронная микроскопия это способ исследования различных структур, которые не находятся в пределах видимости светового микроскопа и имеют размеры меньше.
Работу выполнила: Ученица 10 класса «А» МБОУ СОШ 3 Круглова Оксана Преподаватель: Солнышкина Е.И.
Кристаллизации металлов. Методы исследования металлов.
Транксрипт:

Выполнила: студентка 4 го курса Цветкова Анна

Прибор, который позволяет получать сильно увеличенное изображение объектов, используя для их освещения электроны. Электронный микроскоп дает возможность видеть детали, слишком мелкие, чтобы их мог разрешить световой (оптический) микроскоп. Электронный микроскоп– один из важнейших приборов для фундаментальных научных исследований строения вещества, особенно в таких областях науки, как биология и физика твердого тела.

Появление электронного микроскопа стало возможным после ряда физических открытий конца XIX начала XX века. Это открытие в 1897 году электрона (Дж.Томсон) и экспериментальное обнаружение в 1926 году волновых свойств электрона (К.Дэвиссон, Л.Гермер), подтверждающее выдвинутую в 1924 году де Бройлем гипотезу о корпускулярно-волновом дуализме всех видов материи. В 1926 году немецкий физик X. Буш создал магнитную линзу, позволяющую фокусировать электронные лучи, что послужило предпосылкой для создания в 1930-х годах первого электронного микроскопа. корпускулярно-волновом дуализме

В 1930-х годах был изобретен обычный просвечивающий электронный микроскоп (ОПЭМ) в 1950-х годах – растровый (сканирующий) электронный микроскоп (РЭМ) в 1980-х годах – растровый туннельный микроскоп (РТМ). Эти три вида микроскопов дополняют друг друга в исследованиях структур и материалов разных типов.

ОПЭМ подобен световому микроскопу, только для освещения образцов в нем используется не свет, а пучок электронов. В нем имеются электронный прожектор ряд конденсорных линз, объективная линза и проекционная система, которая соответствует окуляру, но проецирует изображение на люминесцентный экран или фотопластинку. Источником электронов служит нагреваемый катод. Катод электрически изолирован от остальной части прибора, и электроны ускоряются сильным электрическим полем. Здесь поддерживается давление, не превышающее одной миллиардной атмосферного.

В РЭМ применяются электронные линзы для фокусировки электронного пучка в пятно очень малых размеров. Это пятно непрерывно обегает некоторый участок образца аналогично лучу, обегающему экран телевизионной трубки. Электрический сигнал, возникающий при бомбардировке объекта электронами пучка, используется для формирования изображения на экране телевизионного кинескопа или электронно- лучевой трубки, развертка которой синхронизирована с системой отклонения электронного пучка. Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. Это увеличение составляет от 10 до 10 млн.

В э том микроскопе используется металлическое острие малого диаметра, являющееся источником электронов. В зазоре между острием и поверхностью образца создается электрическое поле. Число электронов, вытягиваемых полем из острия в единицу времени, зависит от расстояния между острием и поверхностью образца (меньше 1 нм). Если острие заканчивается одиночным атомом, то можно сформировать изображение поверхности, проходя атом за атомом. РТМ работает только при условии, что расстояние от острия до поверхности постоянно, а острие можно перемещать с точностью до атомных размеров. Высокую точность обеспечивают пьезоэлектрические материалы.

Электронная микроскопия – совокупность методов исследования с помощью электронных микроскопов микроструктуры тел (вплоть до атомно-молекулярного уровня), их локального состава и локализованных на поверхностях или в микрообъёмах тел электрических и магнитных полей (микрополей).

Просвечивающая электронная микроскопия (ПЭМ) Растровая электронная микроскопия (РЭМ) Электронно-зондовый микроанализ

Просвечивающая электронная микроскопия (ПЭМ) позволяет решать широкий круг минералогических задач, и этот круг расширяется по мере развития метода. В ПЭМ, в зависимости от решаемых задач, используются различные методы: суспензии, реплики, ионное травление, ультрамикротомирование, декорирование, прямое наблюдение плоских сеток и др. Растровая электронная микроскопия (РЭМ). В основе РЭМ лежит сканирование поверхности образца электронным зондом и детектирование (распознавание) возникающего при этом широкого спектра излучений. Сигналами для получения изображения в РЭМ служат вторичные, отраженные и поглощённые электроны. Принцип действия РЭМ основан на использовании некоторых эффектов, возникающих при облучении поверхности объектов тонко сфокусированным пучком электронов – зондом. В результате взаимодействия электронов с образцом (веществом) генерируются различные сигналы. Электронно-зондовый микроанализ позволяет обнаружить присутствие в объеме порядка 0,1-2 мкм 3 практически всех элементов периодической системы в пределах 2–20 % их массового содержания. С его помощью можно проводить количественный химический анализ шлифов и аншлифов из сплавов, минералов, шлаков, органических и неорганических соединений на все элементы без разрушения исходного образца.

Наиболее широко применяются просвечивающая (трансмиссивная) и сканирующая электронная микроскопия. Просвечивающая электронная микроскопия применяется для изучения ультратонких срезов микробов, тканей, а также строения мелких объектов (вирусов, жгутиков. и др.), контрастированных фосфорно- вольфрамовой кислотой, уранилацетатом, напылением металлов в вакууме и др. Сканирующая электронная микроскопия применяется для изучения поверхности объектов.

Информацию о расположении мембранных белков дают новые методы – замораживания-скалывания и замораживания-травления. Последовательность действий такова: 1. Замораживание образца. 2. Скалывание с помощью ножа при низкой ( С) температуре в глубоком вакууме. Возникающие при скалывании усилия приводят к образованию среза, проходящего через образец. Когда плоскость среза проходит через мембрану, она раскалывается преимущественно по своей срединной области и расщепляется на две половинки. В результате на образовавшихся плоскостях скола обнажается внутренняя область мембраны. 3. При необходимости образец подвергают травлению – проводят обычную возгонку льда в вакууме. Это позволяет лучше визуализировать поверхностные структуры клеточных мембран. 4. После этого получают так называемую реплику с обнаженной поверхности. Именно эту реплику и изучают под электронным микроскопом. Результаты показали, что не все липиды в мембране расположены по принципу бислоя. Физические методы исследования показывают, что липидная фаза мембран содержит участки, где липидные молекулы не образуют двойной слой. Основная область приложения биофизики – структурная основа мембраны, а именно двойной слой фосфолипидных молекул.