Атмосфера Земли

Презентация:



Advertisements
Похожие презентации
Атмосфера газовая оболочка (геосфера), окружающая планету Земля. Внутренняя её поверхность покрывает гидросферу и частично кору, внешняя граничит с околоземной.
Advertisements

Атмосфе́ра - газовая оболочка окружающая планету Земля. Внутренняя её поверхность покрывает гидросферу и частично кору, внешняя граничит с околоземной.
Атмосфера Земли Рябиков Павел 6«А». Определение атмосферы Атмосфера (от. др.-греч. τμός пар и σφα ρα шар) газовая оболочка, окружающая планету Земля.
Атмосфера Земли Проект подготовила – ученица 7 класса Школы 1405 «Вдохновение» Масоликова Анна Учитель физики – А. В. Бутова.
Урок 4. Строение, состав атмосферы и химические реакции в ней.
1. АтмосфераАтмосфера 2. Атмосферное давлениеАтмосферное давление 3. Состав атмосферыСостав атмосферы 4. История образования атмосферыИстория образования.
СОДЕРЖАНИЕ История образования атмосферного давления Химический состав Строения атмосферы Что такое атмосферное давление? Опыт Торричелли. Прибор для.
Атмосфера (от греч. atmos пар и spharia шар) воздушная оболочка Земли, вращающаяся вместе с ней. Развитие атмосферы было тесно связано с геологическими.
Атмосфера (от. др.-греч. τμός пар и σφαρα шар) газовая оболочка (геосфера), окружающая планету Земля. Внутренняя её поверхность покрывает гидросферу и.
Изменение состава и свойств атмосферы. Атмосфера Атмосфера (от. др.-греч. τμός пар и σφα ρα шар) газовая оболочка (геосфера), окружающая планету Земля.
Есть ли, дети, одеяло, Чтоб всю Землю укрывало Чтоб его на всех хватало, Да притом не видно было? Ни сложить, ни развернуть, Ни пощупать, ни взглянуть?
Открытый урок по географии в 6 классе Атмосфера и атмосферные явления. Учитель: Воробьева Ольга Владимировна. Тверская область г. Бежецк МОУ СОШ 4.
* Атмосфера (от греч. atmos пар и spharia шар) воздушная оболочка Земли, вращающаяся вместе с ней. Благодаря атмосфере, в которой содержится кислород,
Атмосфера –воздушная оболочка Земли. Состав атмосферы Атмосфера земли представляет собой механическую смесь газов. По объёму: содержит 78.09% азота, 20.93%
Последствия хозяйственной деятельности человека для окружающей среды Загрязнение воздуха Выполнили ученицы 11 класса МАОУ «СОШ» с.Медведь Васильева А.
Атмосфера Земли Ее состав и строение.
Природа Земли Мини-проект. Бабинова Дарья 5 «Б». Природа земли АТМОСФЕРАГИДРОСФЕРА БИОСФЕРА ЛИТОСФЕРА.
Раздел: географическая оболочка. Тема урока: Строение географической оболочки.
ВОЗДУШНАЯ ОБОЛОЧКА ЗЕМЛИ СОСТОЯЩЯЯ ИЗ СМЕСИ ГАЗОВ Нижняя- поверхность Земли, Верхняя- четко не выражена и постепенно атмосфера переходит в открытое космическое.
азот 78,3% кислород 20,95% аргон 0,93% водяной пар 3-4% углекислый газ 0,03%
Транксрипт:

Определиние Атмосфе́ра (от. др.-греч. τμός пар и σφα ρα шар) газовая оболочка, окружающая планету Земля, одна из геосфер. Внутренняя её поверхность покрывает гидросферу и частично земную кору, внешняя граничит с околоземной частью космического пространства. Совокупность разделов физики и химии, изучающих атмосферу, принято называть физикой атмосферы. Атмосфера определяет погоду на поверхности Земли, изучением погоды занимается метеорология, а длительными вариациями климата климатология.

Граница атмосферы Атмосферой принято считать ту область вокруг Земли, в которой газовая среда вращается вместе с Землёй как единое целое; при таком определении атмосфера переходит в межпланетное пространство постепенно, в экзосфере, начинающейся на высоте около 1000 км от поверхности Земли, граница атмосферы также может условно проводиться по высоте в 1300 км. По определению, предложенному Международной Авиационной Федерацией, граница атмосферы и космоса проводится по линии Кармана, расположенной на высоте около 100 км, где аэронавтика становится полностью невозможной. NASA использует в качестве границы атмосферы отметку в 122 километра; недавние эксперименты уточняют границу атмосферы Земли и ионосферы, как находящуюся на высоте 118 километров.

Физические свойства Суммарная масса воздуха в атмосфере (5,15,3)·10 18 кг. Из них масса сухого воздуха составляет (5,1352 ±0,0003)·10 18 кг, общая масса водяных паров в среднем равна 1,27·10 16 кг. Молярная масса чистого сухого воздуха составляет 28,966 г/моль, плотность воздуха у поверхности моря приблизительно равна 1,2 кг/м 3. Давление при 0 °C на уровне моря составляет 101,325 к Па; критическая температура 140,7 °C (~132,4 К); критическое давление 3,7 МПа; C p при 0 °C 1,0048·10 3 Дж/(кг·К), C v 0,7159·10 3 Дж/(кг·К) (при 0 °C). Растворимость воздуха в воде (по массе) при 0 °C 0,0036 %, при 25 °C 0,0023 %. За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м 3, барометрическое давление 101,35 к Па, температура +20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.

Атмосфера Земли возникла в результате двух процессов: испарения вещества космических тел при их падении на Землю и выделения газов при вулканических извержениях(дегазация земной мантии). С выделением океанов и появлением биосферы атмосфера изменялась за счёт газообмена с водой, растениями, животными и продуктами их разложения в почвах и болотах. В настоящее время атмосфера Земли состоит в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения). Концентрация газов, составляющих атмосферу, практически постоянна, за исключением воды (H 2 O) и углекислого газа (CO 2 ). Содержание воды в атмосфере (в виде водяных паров) колеблется от 0,2 % до 2,5 % по объёму, и зависит в основном от широты. Кроме указанных в таблице газов, в атмосфере содержатся Cl 2, SO 2, NH 3, СО, O 3, NO 2, углеводороды, HCl, HF, HBr, HI, пары Hg, I 2, Br 2, а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц (аэрозоль). Самым редким газом в Земной атмосфере является радон (Rn).

Азот Кислород Аргон Углекислый газ Неон Гелий Метан Криптон Водород Ксенон Закись азота

Строение атмосферы Пограничный слой атмосферы Нижний слой атмосферы примыкающий к поверхности Земли (толщиной 1-2 км) в котором влияние этой поверхности непосредственно влияет на её динамику. Тропосфера Её верхняя граница находится на высоте 810 км в полярных, 1012 км в умеренных и 1618 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м Тропопауза Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой. Стратосфера Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 1125 км (нижний слой стратосферы) и повышение её в слое 2540 км от 56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой. Термопауза Область атмосферы, прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой. Стратопауза Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C). Мезосфера Мезосфера начинается на высоте 50 км и простирается до 8090 км. Температура с высотой понижается со средним вертикальным градиентом (0,250,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы. Мезопауза Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около 90 °C).

Экзосфера (сфера рассеяния) Экзосфера зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежён, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация). До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до 110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве. На высоте около км экзосфера постепенно переходит в так называемыйближнекосмический вакуум, который заполнен сильно разрежёнными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разрежённых пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения. Обзор На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы около 20 %; масса мезосферы не более 0,3 %, термосферы менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

Другие свойства атмосферы и воздействие на человеческий организм Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород. Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода. В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа 40 мм рт. ст., а паров воды 47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине. На высоте около 1920 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметичной кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека, «космос» начинается уже на высоте 1519 км.

Плотные слои воздуха тропосфера и стратосфера защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра. По мере подъёма на всё большую высоту над поверхностью Земли постепенно ослабляются, а затем и полностью исчезают такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и др. В разрежённых слоях воздуха распространение звука оказывается невозможным. До высот км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот км, знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл: там проходит условная линия Кармана, за которой начинается область чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы. На высотах выше 100 км атмосфера лишена и другого замечательного свойства способности поглощать, проводить и передавать тепловую энергию путём конвекции (то есть с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение.

История образования атмосферы Согласно наиболее распространённой теории, атмосфера Земли на протяжении истории последней перебыла в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера. На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком, водяным паром). Так образовалась вторичная атмосфера. Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами: утечка легких газов (водорода и гелия) в межпланетное пространство; химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов. Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот Образование большого количества азота N 2 обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом О 2, который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N 2 выделяется в атмосферу в результате денитрификации нитратов и других азотосодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы. Азот N 2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине- зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, которые могут быть эффективными сидератами - растениями, которые не истощают, а обогащают почву естественными удобрениями.

Кислород Состав атмосферы начал радикально меняться с появлением на Земле живых организмов, в результате фотосинтеза, сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений аммиака, углеводородов, закисной формы железа, содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере, литосфере и биосфере, это событие получило название Кислородная катастрофа. В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Они коррелировали прежде всего со скоростью отложения органических осадочных пород. Так, в периоды угленакопления содержание кислорода в атмосфере, видимо, заметно превышало современный уровень.

Углекислый газ Содержание в атмосфере СО 2 зависит от вулканической деятельности и химических процессов в земных оболочках, но более всего от интенсивности биосинтеза и разложения органики в биосфере Земли. Практически вся текущая биомасса планеты (около 2,4·10 12 тонн) образуется за счет углекислоты, азота и водяного пара, содержащихся в атмосферном воздухе. Захороненная в океане, в болотах и в лесах органика превращается в уголь, нефть и природный газ

Благородные газы Источник инертных газов аргона, гелия и криптона вулканические извержения и распад радиоактивных элементов. Земля в целом и атмосфера в частности обеднены инертными газами по сравнению с космосом. Считается, что причина этого заключена в непрерывной утечке газов в межпланетное пространство.

Загрязнение атмосферы В последнее время на эволюцию атмосферы стал оказывать влияние человек. Результатом человеческой деятельности стал постоянный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО 2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО 2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие лет количество СО 2 в атмосфере удвоится и может привести к глобальны изменениям климата. Сжигание топлива основной источник и загрязняющих газов (СО, NO, SO 2 ). Диоксид серы окисляется кислородом воздуха до SO 3, а оксид азота до NO 2 в верхних слоях атмосферы, которые в свою очередь взаимодействуют с параи воды, а образующиеся при этом серная кислота Н 2 SO 4 и азотная кислотаНNO 3 выпадают на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец Pb(CH 3 CH 2 ) 4 ). Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу одна из возможных причин изменений климата планеты.