Цели урока: Усвоить определение следующих понятий: Система счисления, цифра, число, основание системы счисления, разряд, алфавит, непозиционная система.

Презентация:



Advertisements
Похожие презентации
- Говорили древнегреческие философы, ученики Пифагора, подчеркивая важную роль чисел в практической деятельности.
Advertisements

- Говорили древнегреческие философы, ученики Пифагора, подчеркивая важную роль чисел в практической деятельности.
Урок по теме:. Цели урока: Усвоить определение следующих понятий: Система счисления, цифра, число, основание системы счисления, разряд, алфавит, непозиционная.
Числа и системы счисления. Понятие числа является фундаментальным как для математики, так и для информатики. Цифры – это символы, участвующие в записи.
Кодирование числовой информации Представление числовой информации с помощью систем счисления.
«Все есть число», говорили пифагорийцы, подчеркивая необычайно важную роль чисел в практической деятельности. Для представления чисел используются системы.
Системы счисления. Число можно представить группой символов некоторого алфавита. Система счисления – совокупность правил для обозначения и наименования.
Системы счисления. Все есть число", говорили пифагорийцы, подчеркивая необычайно важную роль чисел в практической деятельности. Известно множество способов.
Системы счисления. Позиционные Вавилонская шестидесятеричная система Двоичная система Шестнадцатеричная система Десятичная система Системы счисления Непозиционные.
Системы счисления. Содержание Введение Непозиционные системы счисления Непозиционные системы счисления Единичная Римская Позиционные системы счисления.
4.1. Кодирование числовой информации Представление числовой информации с помощью систем счисления Для записи информации о количестве объектов используются.
Грандиозные достижения человечества - письменность и арифметика - есть не что иное, как системы кодирования речи и числовой информации. Дарвин считал,
8 класс 2-й урок Матвеева В.П.. Цель урока: Повторить понятия «система счисления», «алфавит» системы счисления Закрепить умения: - представление числа.
Системы счисления Курушская СОШ г.. Позиционные Вавилонская шестидесятеричная система Двоичная система Шестнадцатеричная система Десятичная система.
СИСТЕМЫ СЧИСЛЕНИЯ Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита,
Автор: Пророченко Ю.М.. Система счисления это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита,
Система счисления – это совокупность приёмов и правил для обозначения и именования чисел. Единичная (унарная) система записи чисел:
Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.
Системы счисления Почему люди разных стран говорят на разных языках, а считают одинаково?
Системы счисления. Содержание Введение Непозиционные системы счисления Непозиционные системы счисления Единичная Римская Позиционные системы счисления.
Транксрипт:

Цели урока: Усвоить определение следующих понятий: Система счисления, цифра, число, основание системы счисления, разряд, алфавит, непозиционная система счисления, позиционная система счисления, единичная (унарная) система счисления. Научиться записывать: десятичное число в римской системе счисления, любое число в позиционной системе счисления в развернутой форме Уметь: определять основание системы счисления приводить примеры чисел различных позиционных систем счисления объяснить разницу между числом и цифрой позиционной и непозиционной системой счисления

- Говорили древнегреческие философы, ученики Пифагора, подчеркивая важную роль чисел в практической деятельности.

- Это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами. Система счисления Система счисления - Это совокупность приемов и правил, по которым числа записываются и читаются.

системы счисления позиционные непозиционные

Непозиционной называют систему счисления, в которой количественное значение цифры не зависит от ее положения в числе.

Примерами непозиционных систем счисления являются: единичная единичная десятичная древнеегипетская десятичная древнеегипетская алфавитная система записи чисел алфавитная система записи чисел (римская) (римская)

Единичная система счисления В древние времена, когда люди начали считать, появилась потребность в записи чисел. Первоначально количество предметов отображали равным количеством каких-нибудь значков: насечек, черточек, точек. ++ =

Десятичная древнеегипетская система счисления Для обозначения ключевых чисел использовали специальные значки-иероглифы: (Вторая половина третьего тысячелетия)

Алфавитная система записи чисел До конца XVII века на Руси в качестве цифр использовались следующие буквы кириллицы, если над ними ставился специальный знак - титло. Например:

Римская система счисления До нас дошла римская система записи чисел Применяется более 2500 лет. В качестве цифр в ней используются латинские буквы: I V X L C D M Например: CXXVIII = =128

Позиционной называют систему счисления, в которой количественное значение цифры зависит от ее положения в числе.

Вавилонская система счисления Первая позиционная система счисления была придумана еще в древнем Вавилоне, причем вавилонская нумерация была шестидесятеричной, то есть в ней шестидесятеричной, то есть в ней использовалось шестьдесят цифр! Числа составлялись из знаков двух видов: Единицы –прямой клин Десятки – лежачий клин Сотни = 11

Позиционные системы счисления Наиболее распространенными в настоящее время являются -десятичная -двоичная -восьмеричная -шестнадцатеричная позиционные системы счисления.

Десятичная система счисления Любое число мы можем записать при помощи десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Именно поэтому наша современная система счисления называется десятичной. Известный русский математик Н.Н.Лузин так выразился по этому поводу: «Преимущества десятичной системы счисления не математические, а зоологические. Если бы у нас было на руках не десять пальцев, а восемь, то человечество бы пользовалось восьмеричной системой счисления.»

Десятичная система счисления Хотя десятичную систему счисления принято называть арабской, но зародилась она в Индии, в V веке. В Европе об этой системе узнали в ХII веке из арабских научных трактатов, которые были переведены на латынь. Этим и объясняется название «Арабские цифры». Однако широкое распространение в науке и в обиходе десятичная система счисления получила только в XVI веке. Эта система позволяет легко выполнять любые арифметические вычисления, записывать числа любой величины. Распространение арабской системы дало мощный толчок развитию математики.

Арабская нумерация Возобладала при Петре I Как видоизменялись цифры, употреблявшиеся арабами, пока они не приняли современные формы:

Была придумана задолго до появления компьютеров. Официальное рождение двоичной арифметики связано с именем Г. В. Лейбница, опубликовавшего в 1703 г. статью, в которой он рассмотрел правила выполнения арифметических действий над двоичными числами. Ее недостаток – «длинная» запись чисел. В настоящий момент – наиболее употребительная в информатике, вычислительной технике и смежных отраслях система счисления. Использует две цифры: 0 и 1 Пример: Свернутая форма записи числа: Развернутая форма: 101 =1*2 2 +0*2 1 +1*2 0 Все числа в компьютере представляются с помощью нулей и единиц, т. е. в двоичной системе счисления.

Позиционная система счисления Количество используемых цифр называется основанием позиционной системы счисления. За основание позиционной системы можно принять любое натуральное число больше единицы. Основание системы, к которой относится число, обозначается подстрочным индексом к этому числу B8D 16 Пример: основание десятичной системы счисления =10 Позиция цифры в числе называется разрядом Число 555- свернутая форма =5*10+5*10+5*10- развернутая форма числа. 555=5*10+5*10+5*10- развернутая форма числа.

Алфавиты нескольких систем Основание СистемаАлфавит n=2Двоичная 01 n=3Троичная 012 n=8Восьмеричная n=16 шестнадцатеричная ABCDEF

Задание 1: Выписать в тетрадь основные определения понятий, заданные в явном и неявном виде: 1. Система счисления 2. Цифра 3. Число 4. Основание системы счисления 5. Разряд 6. Алфавит 7. Непозиционная система счисления 8. Позиционная система счисления 9. Единичная (унарная) система счисления

Задание 2: Запишите в римской системе счисления числа: 1. 9 = 12 = 2778 = 2. Какие числа записаны с помощью римских цифр: LXV= MCMLXXXVI = __________________________+ (дополнительно) Исправьте неверные равенства, переложив с одного места на другое только одну палочку: VII –V = XI IX – V = VI