ВЫПОЛНИЛА УЧЕНИЦА 11 «А» ЖАРИКОВА ЕЛИЗАВЕТА МЕТОДЫ НАБЛЮДЕНИЯ И РЕГИСТРАЦИИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
МЕТОДЫ НАБЛЮДЕНИЯ И РЕГИСТРАЦИИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ : Счётчик Гейгера Камера Вильсона Пузырьковая камера Толстые фотоэмульсии
Счетчик Гейгера. Ханс Гейгер В газоразрядном счетчике имеются катод в виде цилиндра и анод в виде тонкой проволоки по оси цилиндра. Пространство между катодом и анодом заполняется специальной смесью газов. Между катодом и анодом прикладывается напряжение. U
+ - R К усилителю Стеклянная трубка Анод Катод Счётчик Гейгера применяется в основном для регистрации электронов и y - квантов(фотонов большой энергии). Счётчик регистрирует почти все падающие в него электроны. Регистрация сложных частиц затруднена. Счетчик Гейгера. Чтобы зарегистрировать y- кванты, стенки трубки покрывают специальным материалом, из которого они выбивают электроны.
Она представляет собой герметично закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению. Стеклянная пластина поршень вентиль Вильсон- английский физик, член Лондонского королевского общества. Изобрёл в 1912 г прибор для наблюдения и фотографирования следов заряжённых частиц, впоследствии названную камерой Вильсона (Нобелевская премия, 1927). Камера Вильсона Советские физики П.Л. Капица и Д.В. Скобельцин предложили помещать камеру Вильсона в однородное магнитное поле.
Если частицы проникают в камеру, то на их пути возникают капельки воды. Эти капельки образуют видимый след пролетевшей частицы - трек. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины оценивается её скорость. Трек имеет кривизну. Первое искусственное превращение элементов – взаимодействие частицы с ядром азота, в результате которого образовались ядро кислорода и протон.
поршень Пузырьковая камера Фотография столкновения элементарных частиц в главной пузырьковой камере ускорителя Европейского центра ядерных исследований (ЦЕРН) в Женеве, Швейцария. Траектории движения элементарных частиц расцвечены для большей ясности картины. Голубыми линиями отмечены следы пузырьков, образующихся вокруг атомов, возбужденных в результате пролета быстрых заряженных частиц Д.Глейзер. Вскипание перегретой жидкости. При понижении давления жидкость в камере переходит в перегретое состояние. Пролёт частицы вызывает образование цепочки капель, которые можно сфотографировать.
Заряжённые частицы создают скрытые изображения следа движения. По длине и толщине трека можно оценить энергию и массу частицы. Фотоэмульсия имеет большую плотность, поэтому треки получаются короткими. Фотографические эмульсии 20-е г.г. Л.В.Мысовский, А.П.Жданов. Треки элементарных частиц в толстослойной фотоэмульсии Наиболее дешевым методом регистрации ионизирующего излучения является фотоэмульсионный (или метод толстослойных эмульсий). Он базируется на том, что заряженная частица, двигаясь в фотоэмульсии, разрушает молекулы бромида серебра в зернах, сквозь которые прошла. После проявления такой пластинки в ней возникают «дорожки» из осевшего серебра, хорошо видимые в микроскоп. Каждая такая дорожка это след движущейся частицы. По характеру видимого следа (его длине, толщине и т. п.) можно судить как о свойствах частицы, которая оставила след (ее энергии, скорости, массе, направлении движения), так и о характере процесса (рассеивание, ядерная реакция, распад частиц), если он произошел в эмульсии.
На рисунке изображены следы в фотоэмульсии. Этот метод имеет такие преимущества: 1. Им можно регистрировать траектории всех частиц, пролетевших сквозь фотопластинку за время наблюдения. 2. Фотопластинка всегда готова для применения (эмульсия не требует процедур, которые приводили бы ее в рабочее состояние). 3. Эмульсия обладает большой тормозящей способностью, обусловленной большой плотностью. 4. Он дает неисчезающий след частицы, который потом можно тщательно изучать. Недостатком метода является длительность и сложность химической обработки фотопластинок и главное много времени требуется для рассмотрения каждой пластинки в сильном микроскопе.