Третье начало термодинамики (теорема Нернста) физический принцип, определяющий поведение энтропии при абсолютном нуле температуры. Является одним из постулатов.

Презентация:



Advertisements
Похожие презентации
ВТОРОЕ И ТРЕТЬЕ НАЧАЛА ТЕРМОДИНАМИКИ Энтропия. Приведенная теплота. Энтропия Из рассмотренного цикла Карно видно, что равны между собой отношения теплот.
Advertisements

Рассмотрим соотношение (11.9.2), полученное для цикла Карно где Т 1 – температура нагревателя, Q 1 – тепло, полученное газом от нагревателя, Т 2 – температура.
Лекции по физике. Молекулярная физика и основы термодинамики Второе начало термодинамики. Тепловые двигатели. Энтропия. Цикл Карно.
ЭНТРОПИЯ. ВТОРОЕ И ТРЕТЬЕ НАЧАЛА ТЕРМОДИНАМИКИ 1.Приведенная теплота. Энтропия 2. Изменение энтропии 3. Поведение энтропии в процессах изменения агрегатного.
Термодинамика (продолжение). Состояния вещества В термодинамике различные состояния вещества – твердое, жидкое, газообразное – принято называть фазами.
Уравнение Менделеева Клапейрона (уравнение состояния идеального газа).
Э Э нергомашиностроение. 6 Лекция 2 Свойства идеальных газов Лекция 2 Свойства идеальных газов Закон Бойля-Мариотта. Закон Гей-Люссака. Уравнения состояния.
Модель свободных электронов, также известна как модель Зоммерфельда или модель Друде-Зоммерфельда, простая квантовая модель поведения валентных электронов.
Уравнение состояния идеального газа Уравнение состояния идеального газа.
Лекция 2 Элементы термодинамики 1 План лекции 1. Термодинамика. 2. Основные термины термодинамики. 3. Работа газа. 4. Тепловая энергия. Внутренняя энергия.
Молекулярно кинетическая теория газов. Основы термодинамики.
Лекция 7 Молекулярная физика и термодинамика. Тепловое равновесие. Температура. Молекулярная физика и термодинамика изучают свойства и поведение макроскопических.
Температура. Абсолютная температура
Модуль 2 Лекция 71 Модуль 2. Молекулярная физика и термодинамика. Молекулярно-кинетическая теория Л7-10 Распределение Максвелла-Больцмана Л8-13. Явление.
11. Основы термодинамики 11.1 Первое начало термодинамики При термодинамическом описании свойств макросистем используют закономерности, наблюдающиеся в.
Основные термодинамические процессы в газах 1 Иркутский государственный технический университет Доцент кафедры СМ и ЭАТ Молокова С. В.
Статистические распределения (продолжение) Лекция 10 Весна 2012 г.
Сегодня: пятница, 24 июля 2015 г.. Тема : Основы молекулярной физики и термодинамики 1. Предмет и методы исследования 2. Термодинамические системы, параметры,
Уравнение состояния идеального газа Уравнение состояния идеального газа Учитель физики: Мурнаева Екатерина Александровна.
Тема 4. ТЕРМОДИНАМИЧЕСКИЕ ПРОЦЕССЫ ИЗМЕНЕНИЯ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА 4.1. ОБЩИЕ ВОПРОСЫ ИССЛЕДОВАНИЯ ПРОЦЕССОВ 4.1. ОБЩИЕ ВОПРОСЫ ИССЛЕДОВАНИЯ ПРОЦЕССОВ.
Транксрипт:

Третье начало термодинамики (теорема Нернста) физический принцип, определяющий поведение энтропии при абсолютном нуле температуры. Является одним из постулатов термодинамики.

Третье начало термодинамики может быть сформулировано так: «Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система». Или где -любой термодинамический параметр.

Третье начало термодинамики Заметим, что третье начало термодинамики относится только к равновесным состояниям. Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение): третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Третье начало термодинамики Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики). В классической термодинамике энтропия может быть определена лишь с точностью до произвольной аддитивной постоянной S0, что практически не мешает большинству термодинамических исследований, так как реально измеряется разность энтропий (S0) в различных состояниях. Согласно третьему началу термодинамики, при Т 0 значение ΔS 0.

В 1911 году Макс Планк сформулировал третье начало термодинамики, как условие обращения в нуль энтропии всех тел при стремлении температуры к абсолютному нулю:. Отсюда S 0 = 0, что даёт возможность определять абсолютное значения энтропии и других термодинамических потенциалов.

Формулировка Планка Формулировка Планка соответствует определению энтропии в статистической физике через термодинамическую вероятность (W) состояния системы

Третье начало термодинамики При абсолютном нуле температуры система находится в основном квантово-механическом состоянии, если оно не вырождено, для которого W = 1 (состояние реализуется единственным микрораспределением). Следовательно, энтропия S при Т 0 равна нулю. В действительности при всех измерениях стремление энтропии к нулю начинает проявляться значительно раньше, чем может стать существенной при T = 0 дискретность квантовых уровней макроскопической системы, приводящая к явлениям квантового вырождения.

Третье начало термодинамики Из третьего начала термодинамики следует, что абсолютного нуля температуры нельзя достигнуть ни в каком конечном процессе, связанном с изменением энтропии, к нему можно лишь асимптотически приближаться, поэтому третье начало термодинамики иногда формулируют как принцип недостижимости абсолютного нуля температуры. Из третьего начала термодинамики вытекает ряд термодинамических следствий: при T 0 должны стремиться к нулю теплоёмкости при постоянном давлении и при постоянном объёме, коэффициенты теплового расширения и некоторые аналогичные величины.

Третье начало термодинамики Справедливость третьего начала термодинамики одно время подвергалась сомнению, но позже было выяснено, что все кажущиеся противоречия (ненулевое значение энтропии у ряда веществ при Т=0) связаны с метастабильными состояниями вещества, которые нельзя считать термодинамически равновесными.

Третье начало термодинамики часто нарушается в модельных системах. Так, при энтропия классического идеального газа стремится к минус бесконечности. Это говорит о том, что при низких температурах идеальный газ должен вести себя не по уравнению Менделеева Клапейрона. Таким образом, третье начало термодинамики указывает на недостаточность классической механики и статистики и является макроскопическим проявлением квантовых свойств реальных систем.