Осевая симметрия многогранников

Презентация:



Advertisements
Похожие презентации
Симметрия в пространстве. Центр симметрии Точки А и А 1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА.
Advertisements

А А 1 А 1 О Точки А и А 1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА 1. Точка О считается симметричной.
Выполнила: Давыдова Кристина.. Симметрия бывает. 1. Центральная 2. Осевая 3. Симметрия в пространстве(зеркальная)
Осевая симметрия Геометрия. Содержание 1. Симметрия 2. Осевая симметрия 3. Задачи 4. Симметрия в геометрии, природе, архитектуре, поэзии 5. Заключение.
Осевая и центральная симметрия Выполнила Уч-ца 8 класса Адиева Аминат.
Движение Осевая симметрия Движение Осевая симметрия Симметрия относительно прямой это осевая симметрия ? ? Где находится ось симметрии ? ? Поворот плоскости.
Осевая симметрия Геометрия 8 класс Учитель математики МОУ СОШ23 Козлова Наталия Вячеславовна.
ОСЕВАЯ И ЦЕНТРАЛЬНАЯ СИММЕТРИИ Работа выполнена учителем МОАУ СОШ с УИОП 48 Шамовой Л.Н.
Осевая симметрия 11 В класс Выполнила Степаненко Инна.
Презентация по теме : Осевая симметрия Работу выполнили: Иванюк С. Мотовичёв В. Голенев А.
Косулиной Анны 8 «А» класс Осевая и центральная симметрии.
Симметрия Центральная симметрия Центральная симметрия Осевая симметрия Осевая симметрия Симметрия в мире Симметрия в мире ©Гаврилов Александр 9 «Б» ©Гаврилов.
Выполнил ученик 11 Б класса Михайлов Антон. М M О Пусть О - точка в пространстве. Рассмотрим отображение пространства на себя, при котором точка О остается.
Понятие движения Составитель ученик 9 класса школы при Посольстве РФ в Великобритании Силицкий Артём Учитель математики Щербакова В.Б.
Движение - Движение - Это отображение пространства на себя, сохраняющее расстояния между точками.
Движения. Отображения пространства на себя, сохраняющие расстояние между точками, называются движениями пространства. Отображения пространства на себя,
Определение Две точки А и А 1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к.
Данная презентация изготовлена учителем математики Сосенской средней щколы N1 Градовой Л. М. Осевая и центральная симметрии.
Симметрии
Точки А и А 1 называются симметричными относительно точки О, если О – середина отрезка АА 1. Точка О – центр симметрии. Точка О считается симметричной.
Транксрипт:

Осевая симметрия многогранников Выполнила: Зиятдинова Руфина 10 а

Симметрия это Симметрия в широком смысле – неизменность структуры материального объекта относительно его преобразований. Симметрия играет огромную роль в искусстве и архитектуре. Но ее можно заметить и в музыке, и в поэзии. Симметрия широко встречается в природе, в особенности у кристаллов, у растений и животных. Симметрия может встретиться и в других разделах математики, например при построении графиков функций. Две точки, лежащие на одном перпендикуляре к данной прямой по разные стороны и на одинаковом расстоянии от нее, называются симметричными относительно данной прямой.

Осевая симметрия Точки A и А1 называются симметричными относительно прямой a, если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему. А А1 а

Фигуры, обладающие одной осью симметрии

Фигуры, обладающие двумя осями симметрии

Фигуры, обладающие более двумя осями симметрии

Примеры многогранников с осевой симметрией

Симметрия в природе

Определение Зеркальной симметрией (симметрией относительно плоскости альфа) называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно этой плоскости альфа точку М1.

Примеры многогранников с зеркальной симметрией 21 3