Над проектом работал: Сестреватовский Руслан Под руководством учителя математики Джумагадиевой А.Ж.
Показать необходимость и значимость параллельных прямых
Изучить историю возникновения параллельных прямых Рассмотреть применение параллельных прямых в жизни. Сделать сравнительный анализ аксиомы параллельных прямых Евклида и Лобачевского.
Без параллельных прямых невозможна наша жизнь!
Недостаток информации по теме «параллельные прямые» в школьном курсе математики
«параллелой»- рядом идущие «друг подле друга проведенные» (перевод с греческого языка)
« Параллельные суть прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не встречаются.»
«Две прямые, лежащие в одной плоскости и равностоящие друг от друга.»
Параллельные прямые -это прямые, лежащие в одной плоскости и не пересекающиеся.
a b ab a=b
При строительстве зданий строго учитывается понятие параллельности Самый наглядный пример параллельности прямых - железнодорожное полотно
замыкание, нет электричества крушение поезда
Но с другой стороны мы столкнулись со странным явлением: устремляя взгляд далеко в бесконечность, можно увидеть пересечение параллельных прямых! В чем же дело? Чтобы ответить на этот вопрос обратимся к великим ученым.
Эксперимент «Иллюзии зрения» ИТОГИ опроса: всего параллельно нет всего параллельно нет 20 55% 45% 20 55% 45% Ответ: параллельно. В геометрии истинность каждого утверждения необходимо доказывать, нельзя полагаться только на наблюдения. Положительный момент: благодаря зрительным искажениям существует живопись.
Через точку не лежащую на прямой, можно провести только одну прямую параллельной данной. Пятый постулат Евклида. «Начала»
Евклид (III век до н. э.) Древнегреческий математик, автор первого трактата по геометрии «Начала» (в 13 книгах). И стояла геометрия Евклида, Как египетская чудо-пирамида. Строже выдумать строение невозможно, Лишь одна была в ней глыба ненадёжна. Аксиома называлась «параллели». Разгадать её загадку не сумели.
Николай Иванович Лобачевский (1792 – 1856 гг.) И подумал Лобачевский: « Но ведь связана с природой аксиома! Мы природу понимаем по-земному. Во Вселенной расстоянья неземные, Могут действовать законы там иные! Параллельные пойдут не параллельно! Там, где звёздный мир раскинулся без края, - Аксиома параллели - там другая!».
«Чем отличается геометрия Лобачевского от геометрии Евклида?» через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. Евклидова аксиома о параллельных: Аксиома Лобачевского о параллельных:
Изучив вопросы по данной теме мы пришли к выводам: каждый разносторонне развитый ученик должен знать историю параллельных прямых параллельные прямые часто встречаются в окружающем нас мире, поэтому они очень нужны.
параллельные прямые не пересекаются на плоскости! в пространстве параллельность прямых исчезает – существует точка пересечения параллельных прямых!