Окружность Работа выполнена учеником 8 класса Самигуллиным Булатом.

Презентация:



Advertisements
Похожие презентации
Презентация к уроку по геометрии (7 класс) по теме: Медианы, биссектрисы и высоты треугольника
Advertisements

Медианы, биссектрисы и высоты треугольника. МЕДИАНА Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой.
ПАРАЛЛЕЛЬНЫЕ ПЛОСКОСТИ МЕДИАНА ТРЕУГОЛЬНИКА Две плоскости не имеющие общих точек называются параллельными.
Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется Отрезок, соединяющий вершину треугольника с серединой противоположной.
Замечательные точки треугольника. Презентацию подготовил: Ученик 8 "В" класса Давлитшин Павел Калининград 2009.
Помнить каждому нужно, Что такое окружность. Это множество точек, Расположенных точно На одном расстоянии, Обратите внимание, От одной только точки. Помни.
Треугольником называется фигура, состоящая из трех точек, не лежащих на одной прямой, трех отрезков, соединяющих эти точки, а также части плоскости, ограниченной.
Замечательные точки треугольника. Презентацию подготовил: Ученик 8 «г" класса Боранбаева Лилия Бектуганова Зарина Талдыкорган 2012.
Медиана. Биссектриса. Высота. В тупоугольном треугольнике две высоты падают на продолжение сторон и лежат вне треугольника. Третья внутри треугольника.
ЗАМЕЧАТЕЛЬНЫЕ ОТРЕЗКИ ТРЕУГОЛЬНИКА Автор: Тивикова Даша 5 класс ГОУ СОШ 1173 Руководитель проекта: Мошнина Ирина Владимировна.
Медиана, биссектриса, высота треугольника. Теорема: Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой и причем только один.
1.1. Точка, делящая отрезок пополам, называется ______.
ТЕМА УРОКА: «Четыре замечательные точки треугольника»
Треугольники Треугольники Работу выполнил ученик 9«Б»класса МОУ СОШ 46 Болвачев Михаил Александрович Учитель математики Образцова Марина Михайловна.
Медиана, биссектриса, высота треугольника. Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Геометрия Треугольник. Содержание: 1) Давайте вспомним. 2)Подобные фигуры 3)Определение подобных треугольников 4)Признаки подобия треугольника 5) Это.
отрезок, соединяющий вершину треугольника с серединой противолежащей стороны Биссектриса треугольника Медиана треугольника Высота треугольника.
A В С М Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой.
Треугольники 1.Треугольник. 2.Виды треугольников. 3.Основные линии в треугольнике. 4.Признаки равенства треугольников. 5.Сумма углов треугольника. 6.Внешние.
Медианы,биссектрисы и высоты треугольника. Медианы треугольника Медиана треугольника - это отрезок, соединяющий вершину треугольника с серединой противолежащей.
Транксрипт:

Окружность Работа выполнена учеником 8 класса Самигуллиным Булатом

Окружность замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.кривая Окружность нулевого радиуса (вырожденная окружность) является точкой, иногда этот случай исключается из определения. Геометрическое место точек плоскости, расстояние от которых до данной точки не больше, чем заданное ненулевое, называется кругом.кругом

Замечательные точки треугольника точки, местоположение которых однозначно определяется треугольником и не зависит от того, в каком порядке берутся стороны и вершины треугольника. Обычно они расположены внутри треугольника, но и это не обязательно. В частности, точка пересечения высот может находиться вне треугольника. Другие замечательные точки треугольника см точка пересечения высот

Медиана треугольника (лат. mediāna средняя) отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы.лат.отрезок треугольника прямую

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.точкецентроидомцентром тяжести

Биссектриса (от лат. bi- «двойное», и sectio «разрезание») угла луч с началом в вершине угла, делящий угол на два равных угла [1]. Можно также определить биссектрису как геометрическое место точек внутри угла, равноудалённых от сторон этого угла.лат.луч угла [1]геометрическое место точек Биссектрисой треугольника называется отрезок биссектрисы угла, проведенный от вершины угла до её пересечения с противолежащей стороной. У треугольника существуют три биссектрисы, соответствующие трём его вершинам..треугольника отрезок