Решение квадратных уравнений СОСТАВИТЕЛЬ АДАМЯН СВЕТЛАНА ЮРЬЕВНА, учитель математики МОУ СОШ 65 с углубленным изучением английского языка Ворошиловского района города Ростова-на-Дону
« Найти стороны поля, имеющего форму прямоугольника, если его площадь 12, а ¾ длины равны ширине»
Теперь уравнение можно записать так: Мы пришли к квадратному уравнению, которое умели решать и египтяне. Не зная отрицательных чисел, древние математики получали: Т.е. длина поля равна 8, а ширина поля равна 3.
Бхаскара Агарья ( ) Индийский математик и астроном. Занимался вопросами алгебры, тригонометрии, геометрии и комбинаторики. В его трудах можно найти одно из старейших наглядных доказательств теоремы Пифагора.
На две партии разбившись, Забавлялись обезьяны. Часть восьмая их в квадрате В роще весело резвилась. Криком радостным двенадцать Воздух свежий оглашали. Вместе сколько же ты скажешь Обезьян там было в роще?
Ответ: 48 или 16 обезьян
Наибольших успехов в математике достиг согдиец Мухаммед ибн Муса аль-Хорезми (то есть, родом из Хорезма - с берегов Сыр-Дарьи). Он работал в первой половине 9 века и был любимцем ученейшего из халифов - Маамуна (сына знаменитого Гаруна ар-Рашида). Главная книга Хорезми названа скромно: "Учение о переносах и сокращениях", то есть техника решения алгебраических уравнений. По- арабски это звучит "Ильм аль-джебр ва"ль-мукабала"; отсюда произошло наше слово "алгебра". Другое известное слово - "алгоритм", то есть четкое правило решения задач определенного типа - произошло от прозвания "аль-Хорезми".
Формула корней квадратного уравнения «переоткрывалась» неоднократно. Один из первых дошедших до наших дней выводов этой формулы принадлежит индийскому математику Брахмагупте (около 598 г.). Брахмагупте Среднеазиатский ученый аль-Хорезми (IX в.) в трактате «Китаб аль-джебр валь -мукабала» получил эту формулу методом выделения полного квадрата с помощью геометрической интерпретации.аль-Хорезми
- дискриминант квадратного уравнения Возможны 3 случая: - корней нет - один корень
1. Решите уравнения: - два корня Ответ:
Ответ: корней нет корней нет. Ответ:
Ответ: нет корней Решите квадратное уравнение:
Решаем упражнения из учебника: 534 (а, г, е, ж), 537 (а, б).
1. Уравнение вида ах²+вх+с=о 2.Квадратные уравнения, у которых первый коэффициент равен Уравнения с одной переменной, имеющие одни и те же корни. 4. Числа а,в и с в квадратном уравнении. 5. Значение переменной, при котором уравнение обращается в верное равенство. 6. Равенство, содержащее неизвестное. 7. Неотрицательное значение квадратного корня. 8. Древнегреческий математик, который нашел приемы решения квадратных уравнений без обращения к геометрии. 9. Квадратное уравнение, в котором хотя бы один из коэффициентов в или с равен «Дискриминант» - по-латыни. 11. Коэффициент с квадратного уравнения. 12. Французский математик, который вывел формулы, выражающие зависимость корней уравнения от его коэффициентов. Если вы разгадаете этот кроссворд верно, то сможете в выделенном вертикальном столбце прочитать термин, относящийся к теме
1. Квадратное. 2. Приведенное. 3. Равносильное. 4. Коэффициент. 5. Корень. 6. Уравнение. 7. Арифметический. 8. Диофант. 9. Неполное. 10. Различитель. 11. Свободный. 12. Виет. В выделенном столбце : ДИСКРИМИНАНТ