Тетраэдр

Презентация:



Advertisements
Похожие презентации
Презентация к уроку (геометрия, 10 класс) по теме: Тетраэдр
Advertisements

Тетраэдр Определение Тетраэдр (четырёхгранник) многогранник с четырьмя треугольными гранями, в каждой из вершин которого сходятся по 3 грани. У тетраэдра.
ТЕТРАЭДР
Математика… выявляет порядок, симметрию и определенность, а это – важнейшие виды прекрасного. (Аристотель)
Выполнила: Цуканова Светлана 10«А». Изучить определения и свойства правильных многогранников Выступить с сообщением в классе Получить положительную оценку.
Содержание: 1)Титульный лист 2)Определение тетраэдра и его свойства 3)Построение тетраэдра 4)Формула объема тетраэдра 5)Определение параллелепипеда его.
Стереометрия ТЕМА: 2.3 ТЕТРАЭДР. СЕЧЕНИЕ ТЕТРАЭДРА. АК ВГУЭС Преподаватель БОЙКО ВЕРА ИВАНОВНА.
Ховаева Екатерина, 10 класс. Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется.
Правильные фигуры в геометрии Учитель математики Беленкова Ольга Александровна.
Презентация на тему:. Тетраэдр имеет три оси симметрии, которые проходят через середины скрещивающихся рёбер. Тетраэдр имеет 6 плоскостей симметрии, каждая.
Автор: Акимова Марина, 10 класс. Руководитель: Заковряшина Н.М. Почему правильных многогранников только пять?
Правильные многогранники Выполнил: Ученик 10 б класса, школы 80 Гречкин Ярослав Учитель Шамсутдинова Р.Р.
Проектная работа "Правильные многогранники" Выполнила ученица 10 класса МКОУ "Калининская СОШ" Сигабатова Асылай Руководитель :Изтелеуова Венера Гизатовна.
ГЕОМЕТРИЧЕСКИЕ ТЕЛА. Классификация ГЕОМЕТРИЧЕСКИЕ ТЕЛА МНОГОГРАННИКИ ТЕЛА ВРАЩЕНИЯ ПРИЗМА ПИРАМИДА ПРАВИЛЬНЫЕ МНОГОГРАННИКИ ЦИЛИНДР КОНУС ШАР.
Геометрия Виды геометрических фигур и их измерения 1. Треугольник - геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех.
Шары и многогранники презентация к лекции В.П. Чуваков.
Сфера и шар.. Сферой называется поверхность, которая состоит из всех точек пространства, находящихся на заданном расстоянии от данной точки. Эта точка.
Комбинации шара с пирамидой. Определение Пирамида называется вписанной в шар, если все ее вершины лежат на границе этого шара. При этом шар называется.
Правильные многогранники. Цель и задачи: Закрепление изученного материала; Закрепление изученного материала; Увеличение интереса к геометрии; Увеличение.
Правильные многогранники 1) Симметрия в пространстве. 1) Симметрия в пространстве. 2) Понятие правильного многогранника. 2) Понятие правильного многогранника.
Транксрипт:

Определение Тетраэдр многогранник с четырьмя треугольными гранями, в каждой из вершин которого сходятся по 3 грани. У тетраэдра 4 грани, 4 вершины и 6 рёбер.Слово «тетраэдр» образовано из двух греческих слов: tetra-«четыре» и hedra- «основание»,«грань».

Построение тетраэдра Изображают обычно тетраэдр как четырехугольник с диагоналями, одну из которых (соответствующую невидимому ребру) изображают пунктирно. А В С D

Тетраэдр DАВС – тетраэдр А, В, С, D – вершины АВС – основание АD, ВD, СD, АС, АВ, ВС– ребра DH – высота тетраэдра C A B D H Два ребра тетраэдра, которые не имеют общих вершин, называются противоположными. Например, АD и ВС, ВD и АС, АВ и СD.

Определения медианы, бимедианы(средние линии) и высоты тетраэдра Отрезок, соединяющий вершину тетраэдра с точкой пересечения медиан противоположной грани, называется его медианой, опущенной из данной вершины. Отрезок, соединяющий середины скрещивающихся рёбер тетраэдра, называется его бимедианой, соединяющей данные рёбра. Отрезок, соединяющий вершину с точкой противоположной грани и перпендикулярный этой грани, называется его высотой, опущенной из данной вершины.

Объем тетраэдра h Объем тетраэдра равен дроби в числителе которой корень квадратный из двух в знаменателе двенадцать, помноженной на куб длины ребра тетраэдра. (V - объем тетраэдра, a - ребро тетраэдра)

Площадь Площадь тетраэдра равна сумме площадей его граней и площади основания. Грани тетраэдра – треугольники. Площадь равна:

Высота тетраэдра Высота тетраэдра равна корню квадратному из двух третьих, помноженному на длину ребра тетраэдра (h - высота тетраэдра, a - ребро тетраэдра)

Типы тетраэдров Равногранный тетраэдр – это тетраэдр, у которого все грани – равные между собой треугольники. Ортоцентрический тетраэдр – это тетраэдр, у которого все высоты, опущенные из вершин на противоположные грани, пересекаются в одной точке. Прямоугольный тетраэдр – это тетраэдр, у которого все ребра, прилежащие к одной из вершин, перпендикулярны между собой. Правильный тетраэдр – это тетраэдр, у которого все грани равносторонние треугольники. Соразмерный тетраэдр, бивысоты которого равны. Инцентрический тетраэдр –это тетраэдр, у которого отрезки, соединяющие вершины тетраэдра с центрами окружностей, вписанных в противоположные грани, пересекаются в одной точке.

Правильный тетраэдр Тетраэдр, все четыре грани которого равные правильные треугольники, называется правильным тетраэдром. Правильный тетраэдр это частный случай правильной треугольной пирамиды.

Все четыре грани правильного тетраэдра – правильные треугольники. Если длину ребра правильного тетраэдра обозначить a, то можно вычислить: Площадь полной поверхности Радиус описанной сферы Объем Угол наклона ребра Высоту Угол наклона грани Радиус вписанной сферы Телесный угол при вершине Правильный тетраэдр

Прямоугольный тетраэдр Тетраэдр, у которого в одной вершине сходятся три прямых угла называют прямоугольным. Такой тетраэдр можно получить, разрезав куб.

Свойство тетраэдра Каждая его вершина является вершиной трех треугольников. А значит, сумма плоских углов при каждой вершине будет равна 180º. В правильный тетраэдр можно вписать октаэдр. Правильный тетраэдр можно вписать в икосаэдр, притом, четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра. Правильный тетраэдр можно вписать в куб двумя способами, притом четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба.

Где используется тетраэдр? Tetra Classic® картонная упаковка в форме тетраэдра для хранения молока, созданная в 1950 году компанией Tetra Pak. С 1959 года поставлялась и широко использовалась в СССР, где эти упаковки обычно назывались «пирамидками» или «треугольными пакетами». Пирамидки были двух основных размеров: большая (для молока и кефира) и поменьше (для сливок). Они были оформлены по-разному в зависимости от вида продукта. Оказалось, что на конвейере удобно склеивать подобные тетраэдры, отрезая заготовки для них от картонного шланга.

Тетраэдры в живой природе Некоторые плоды, находясь вчетвером на одной кисти, располагаются в вершинах тетраэдра, близкого к правильному. Такая конструкция обусловлена тем, что центры четырёх одинаковых шаров, касающихся друг друга, находятся в вершинах правильного тетраэдра. Поэтому похожие на шар плоды образуют подобное взаимное расположение. Например, таким образом могут располагаться грецкие орехи.

Тетраэдры в строительстве Тетраэдр образует жёсткую, статически определимую конструкцию. Тетраэдр, выполненный из стержней, часто используется в качестве основы для пространственных несущих конструкций пролётов зданий, перекрытий, балок, ферм, мостов и т. д. Стержни испытывают только продольные нагрузки.

Уголковый отражатель Уголковый отражатель устройство в виде прямоугольного тетраэдра со взаимно перпендикулярными отражающими плоскостями. Излучение, попавшее в уголковый отражатель, отражается в строго обратном направлении. Используется:для точного измерения расстояний (для лазерной локации Луны, ИСЗ; топосъемке, строительстве); для возврата излучения точно назад (катафот, радиоэлектронная борьба).

Тетраэдры в микромире Молекула метана СН 4 Молекула аммиака NH 3 Алмаз C тетраэдр с ребром равным 2,5220 ангстрем Флюорит CaF2, тетраэдр с ребром равным 3, 8626 ангстрем Сфалерит, ZnS, тетраэдр с ребром равным 3,823 ангстрем Комплексные ионы [BF4] -, [ZnCl4]2-, [Hg(CN)4]2-, [Zn(NH3)4]2+ Силикаты, в основе структур которых лежит кремнекислородный тетраэдр [SiO 4 ] 4-

Lipton tea & тетраэдр Чайная компания Lipton для разнообразия формы пакетиков для чая теперь выпускает их в виде тетраэдра

Головоломка Существуют головоломки в виде тетраэдра.