Комплексные числа МБОУ Большемаресевская СОШ Мордовия Класс: 11 Учебник: Алгебра и начало анализа. Ю. М. Колягин и др. (профильный уровень) (профильный.

Презентация:



Advertisements
Похожие презентации
Комплексные числа МБОУ СОШ 99 г.о.Самара Класс: 10 Учебник: Алгебра и начало анализа. А. Г. Мордкович, П. В. Семенов (профильный уровень) (профильный уровень)
Advertisements

Комплексные числа.
Комплексные числа.. Определение комплексного числа Определение комплексного числаИстория Понятие комплексного числа Понятие комплексного числа Решение.
Число вида z=a+bi называется комплексным. a, b – действительные числа, i – мнимая единица. a= Re z - действительная часть числа z. b= Jm z – мнимая часть.
После изучения темы «Комплексные числа учащиеся должны: Знать: алгебраическую, геометрическую и тригонометрическую формы комплексного числа. Уметь: производить.
«Плюсы» и «минусы» основных числовых систем. Условия. Вид комплексного числа. Определения. Определения Формулы. Формулы. Свойства. Геометрическая интерпретация.
Комплексные числа Козлова Мария 10 «А» класс. i² = - 1 действительных корней нет. i i Но в новом числовом множестве оно должно иметь решение. Для этого.
Комплексные числа. Понятие комплексного числа Х+А=В - недостаточно положительных чисел А·Х + В=0 (А0) – разрешимы на множестве рац.чисел Х²=2 или Х³=5.
КОМПЛЕКСНЫЕ ЧИСЛА. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ Определение. Комплексным числом z называется выражение, где a и b – действительные числа, Определение. Комплексным.
Число – есть основание оформленности и познаваемости всего сущего. Все познаваемое имеет число. Ибо без него невозможно ничего ни понять, ни познать. Филолай.
КОМПЛЕКСНЫЕ ЧИСЛА. N C Z C Q C R C C N- natural R- real C - complex Z – исключительная роль нуля zero Q – quotient отношение ( т.к. рациональные числа.
Комплексные числа. Кафедра Алгебры, Геометрии и Анализа. ДВФУ.
Комплексные числа
Государственное Образовательное Учреждение Лицей 1523 ЮАО г.Москва Лекции по алгебре и началам анализа 10 класс © Хомутова Лариса Юрьевна.
Множество комплексных чисел.. Комплексным числом называется выражение вида а + bi, в котором а и b – действительные числа, а i – некоторый символ такой,
Лектор Пахомова Е.Г г. Математический анализ Раздел: Теория функций комплексного переменного Тема: Комплексные числа. Последовательности комплексных.
Комплексные числа. Основные понятия Комплексным числом z называют выражение: где а и b – действительные числа, i – мнимая единица, определяемая равенством:
Комплексные числа -минимальные условия; -определения; -арифметические операции; -свойства.
Содержание: Возникновение комплексных чисел Понятие комплексного числа Действия над комплексными числами Геометрическая интерпретация комплексных чисел.
Федеральное государственное бюджетное образовательное учреждение ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙТЕХНИЧЕСКИЙУНИВЕРСИТЕТ Институт недропользования.
Транксрипт:

Комплексные числа МБОУ Большемаресевская СОШ Мордовия Класс: 11 Учебник: Алгебра и начало анализа. Ю. М. Колягин и др. (профильный уровень) (профильный уровень) Учитель: Коршунов В.Ю. Год создания: 2016

ОБЯЗАТЕЛЬНЫЙ МИНИМУМ СОДЕРЖАНИЯ ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ ЧИСЛОВЫЕ И БУКВЕННЫЕ ВЫРАЖЕНИЯ Комплексные числа. Геометрическая интерпретация комплексных чисел. Действительная и мнимая часть, модуль и аргумент комплексного числа. Алгебраическая и тригонометрическая формы записи комплексных чисел. Арифметические действия над комплексными числами в разных формах записи. Комплексно сопряженные числа. Возведение в натуральную степень (формула Муавра). Основная теорема алгебры.

Понятие комплексного числа Х+А=В - недостаточно положительных чисел А·Х + В=0 (А0) – разрешимы на множестве рац.чисел Х²=2 или Х³=5 - корни - иррациональные числа Х+5=2

Иррациональные числа Рациональные числа Действительные числа

Решение квадратных уравнений А · Х²+ В ·Х+ С =0 При D<0 действительных корней нет Иррациональные числа Рациональные числа Действительные числа +

Иррациональные числа Рациональные числа Действительные числа + Комплексные числа

Вид комплексного числа Х²=-1 Х= i -корень уравнения i- комплексное число, такое, что i²=-1 А + В· i ЗАПИСЬ КОМПЛЕКСНОГО ЧИСЛА В ОБЩЕМ ВИДЕ

А и В – действительные числа i- некоторый символ, такой, что i²= -1 А – действительная часть В – мнимая часть i – мнимая единица А + В· i

Геометрическая интерпретация комплексного числа

Модуль комплексного числа Z=А - В· i СОПРЯЖЕННОЕ Z= А + В· i (Z) = Z Комплексно сопряженные числа. Z = A + B i =

Тригонометрическая форма комплексного числа Z =r φ- аргумент аргумент комплексного числа Z=r cos φ + i Z sin φ = = r (cos φ+ i sin φ) Для Z=0 аргумент не определяется

Т.к Z =r = Z= А + В· i= cosφ+i sing

Сложение и умножение комплексных чисел Алгебраическая форма Геометрическая форма Сумма (A+iB) + (C+iD)= (A+C)+(B+D)I Произведение Z 1 = r 1 (cos φ 1 + i sin φ 1 ) Z 2 = r 2 (cos φ 2 + i sin φ 2 ) Z 1 ·Z 2 = r 1 r 2 [cos( φ 1 + φ 2 )+isin ( φ 1 + φ 2 )] Произведение (A+iB) · (C+iD)= (AC-BD)+(AD+BC)i

Если Z 1 = Z 2, то получим Z²=[r (cos φ+ i sin φ)]²= r² (cos2 φ+ i sin 2φ) Z³= Z²·Z=[r (cos φ+ i sin φ)]²·r (cos φ+ i sin φ)= r³ (cos3 φ+ i sin 3φ) Формула Муавра Для любого Z= r (cos φ+ i sin φ)0 и любого натурального числа n

Число Z называется корнем степени n из числа ω (обозначается ), если (*) Из данного определения вытекает, что каждое решение уравнения является корнем степени n из числа ω. Z= r (cos φ+ i sin φ) ω= ρ (cos ψ+ i sin ψ) Вторая формула Муавра

Вторая формула Муавра определяет все корни двучленного уравнения степени n Каждое алгебраическое уравнение степени n имеет в множестве комплексных чисел ровно n-корней. Теорема Гаусса: каждое алгебраическое уравнение имеет в множестве комплексных чисел по крайне мере один корень

Пример: Решить уравнение:

Свойства сложения и умножения Переместительное свойство: Сочетательное свойство: Распределительные свойство: Z 1 + Z 2 = Z 1 + Z 2 Z 1 · Z 2 = Z 1 · Z 2 Z 1 · (Z 2 + Z 3 )= Z 1 · Z 2 + Z 1 · Z 3 (Z 1 + Z 2 )+Z 3 = Z 1 +( Z 2 +Z 3 )(Z 1 · Z 2 ) · Z 3 = Z 1 ·( Z 2 · Z 3 )

Геометрическое изображение суммы комплексных чисел

Вычитание и деление комплексных чисел Z+ Z 2 = Z 1 Вычитание – операция, обратная сложению: Z+ Z 2 +(- Z 2 )= Z 1 +(- Z 2 ) Z= Z 1 - Z 2 –разность Деление – операция, обратная умножению: Z · Z 2 = Z 1 Разделив обе части на Z 2 получим:

Геометрическое изображение разности комплексных чисел

Примеры: Найти разность и частное комплексных чисел Решение: