Самоорганизация в живой и неживой природе. Синергетика.

Презентация:



Advertisements
Похожие презентации
Самоорганизация в живой и неживой природе. Кибернетика. Синергетика.
Advertisements

Тема лекции: Теплота. Порядок-хаос 1.Характеристики термодинамичес- ких систем. Первое и второе начала термодинамики. 2.Энтропия - мера необратимости или.
Информация Информационные технологии. Информация и информационные процессы Information – сведение, разъяснение, ознакомление. Понятие «информация» в каждой.
Законы термодинамики. Вопросы для повторения: Что такое внутренняя энергия?внутренняя энергия Назовите способы изменения внутренней энергии.способы изменения.
Законы термодинамики Первый закон термодинамики является, в сущности, законом сохранения энергии, распространенным на все макроскопические тела. Любая.
Необратимость процессов в природе. Физика 10 класс
1 Дать определение понятиям, используя графические иллюстрации: числа степеней свободы молекулы, работы и теплоты, внутренней энергии идеального газа,
Второй закон термодинамики. Процессы ОбратимыеНеобратимые.
Молекулярно кинетическая теория газов. Основы термодинамики.
Информация в природе, обществе, технике 10 класс (базовый уровень)
Информация в неживой и живой природе. Информация в неживой природе В физике, которая изучает неживую природу, информация является мерой упорядоченности.
В физике, которая изучает неживую природу, информация является мерой упорядоченности системы по шкале «хаос - порядок». Один из основных законов классической.
УМК по информатики Угринович Н.Д., 8 класс. Выполнила: Сахарова М.А., учитель информатики и ИКТ, МОУ Мишелевской СОШ 19.
1 Второе начало термодинамики Отвечаем на вопросы о: - тепловых машинах (обратимых и необратимых) - понятии энтропии - втором законе термодинамики Лекция.
Лекция 2 Элементы термодинамики 1 План лекции 1. Термодинамика. 2. Основные термины термодинамики. 3. Работа газа. 4. Тепловая энергия. Внутренняя энергия.
ТЕРМОДИНАМИКА Внутренняя энергия Термодинамика – раздел физики, изучающий возможности использования внутренней энергии тел для совершения механической.
ВТОРОЕ И ТРЕТЬЕ НАЧАЛА ТЕРМОДИНАМИКИ Энтропия. Приведенная теплота. Энтропия Из рассмотренного цикла Карно видно, что равны между собой отношения теплот.
Информация в неживой и живой природе Урок 1. Информация и информационные процессы в неживой природе.
Информация в природе, обществе и технике. В физике, которая изучает неживую природу, информация является мерой упорядоченности системы по шкале «хаос.
Законы термодинамики МОУ Гимназии 26 Выполнил: Селивнов М., Турсунова И., Кожухова В. учащиеся 10-В класса Руководитель: Пылкова Любовь Васильевна, учитель.
Транксрипт:

Самоорганизация в живой и неживой природе. Синергетика.

Структурные уровни организации материи. Неорганическая природа : микро элементарный (уровень элементарных частиц и полевых взаимодействий) ядерный атомарный молекулярный уровень макроскопических тел различной величины планеты звездно-планетные комплексы галактики метагалактики

Структурные уровни организации материи Живая природа: уровень биологических макромолекул клеточный уровень микроорганизменный органов и тканей организм популяционный биоценозный биосферный.

Основные законы классической (равновесной термодинамики). Термодинамическая система – это система, состоящая из большого числа частиц, взаимодействующих между собой. Термодинамические системы могут быть: а) изолированными (замкнутыми) – это те системы, которые не сообщаются с окружающей средой ни работой, ни теплом, ни веществом, ни информацией. Другое название – равновесные. Б) открытыми – сообщающиеся с окружающей средой. Открытые системы не изучаются классической термодинамикой.

Термодинамические законы. Классическая термодинамика описывается д двумя законами: 1. Закон сохранения и превращения энергии - первое начало термодинамики. Q=ΔU+A, где ΔU – изменение внутренней энергии, А – работа. Количество теплоты, сообщенное телу, идет на увеличение его внутренней энергии и совершение телом работы.

Сущность второго начала термодинамики - невозможно осуществить процесс, единственным результатом которого было бы превращение тепла в работу при постоянной температуре. Иногда этот закон выражают в еще более простой форме: Тепло не может перетечь самопроизвольно от холодного тела к более горячему.

Рудольф Клаузиус использовал для формулировки второго закона термодинамики понятие энтропии, которое впоследствии Людвиг Больцман интерпретировал в термине изменения порядка в системе. Когда энтропия системы возрастает, то соответственно усиливается беспорядок в системе. В таком случае второй закон термодинамики постулирует (закон возрастания энтропии): Энтропия замкнутой системы, т.е. системы, которая не обменивается с окружением ни энергией ни веществом, постоянно возрастает.

Энтропия – это количественная мера хаоса в системе, ме мера неупорядоченности. Общий итог достаточно печален: необратимая направленность процессов преобразования энергии в изолированных системах рано или поздно приведет к превращению всех видов энергии в тепловую, которая в среднем равномерно распределится между всеми элементами системы, что и будет означать термодинамическое равновесие, или полный хаос. Если наша Вселенная замкнута, то ее ждет именно такая незавидная участь. Из хаоса, как утверждали древние греки, она родилась, в хаос же, как предполагает классическая термодинамика, и возвратится.

Концепции эволюции реальных систем. Материя способна осуществлять работу и против термодинамического равновесия, самоорганизовываться и самоусложняться.

Самоорганизация в живой и неживой природе. Синергетика. «Синергетика»- в переводе с древнегреческого означает совместное, объединенное действие и подчеркивает кооперативный характер эффектов, связанных с самоорганизацией.

В развитии открытых и сильнонеравновесных систем наблюдаются 2 фазы: 1 фаза - период плавного эволюционного развития, заканчивающийся неустойчивым критическим состоянием. Под точкой бифуркации понимается состояние рассматриваемой системы, после которого возможно некоторое множество вариантов ее дальнейшего развития. 2 фаза: выход из критического состояния одномоментной, скачком и переход в новое устойчивое состояние с большей степенью сложности и упорядоченности.

Явление бифуркации

Примеры самоорганизации систем разной природы химические часы (реакция Белоусова- Жаботинского); Конфигурации, возникающие при реакции Белоусова- Жаботинского в тонком слое в чашке Петри

Примеры самоорганизации систем разной природы Ячейки Бенара, возникающие в подогретом слое жидкости

Примеры самоорганизации систем разной природы рост кристаллов; формирование живого организма; образование форм растений и животных; динамика популяций; развитие рыночной экономики, формирование культурных традиций и общественного мнения, демографические процессы.

Динамика популяции жертв и хищника