Л-142
Введение Тригонометрия - это раздел математики, изучающий тригонометрические функции. Сложно представить, но с этой наукой мы сталкиваемся не только на уроках математики, но и в нашей повседневной жизни. Вы могли не подозревать об этом, но тригонометрия встречается в таких науках, как физика, биология, не последнюю роль она играет и в медицине, и, что самое интересное, без нее не обошлось даже в музыке и архитектуре.
История Тригонометрия– (от греч. Trigwnon-треугольник и metrew- измеряю) По звездам вычисляли местонахождение корабля в море. Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна.
Значимые люди в тригонометрии Гиппарх Никейский ( 180 – 125 г. до н.э.) Таблица числовых значений хорд Таблица для определения соотношений между элементами треугольников Первая таблица синусов, высчитанная по хордам в окружности «Альмагест – самая значимая тригонометрическая работа всей античности Клавдий Птолемей (90 – 168 г н.э)
Построил таблицы тангенсов, котангенсов и косекансов Присоединил к линиям синусов и косинусов линии тангенсов, котангенсов, секансов и косекансов Установил основные соотношения между этими линиями Дал определения функциям Установил формулу двойного угла Ал-Батани ( ок. 900 г. н.э) Абу-ль-Вефа ( 940 – 997 г. н.э)
Франсуа Виет (1540 – 1603 г.) Исаак Ньютон (1643 – 1727 г.) Дополнил и систематизировал различные случаи решения плоских и сферических треугольников Открыл «плоскую» теорему косинусов и формулы тригонометрических функций от кратных углов Разложил функции в ряды и открыл путь для их использования в математическом анализе
Тригонометрия в искусстве cos 2 С + sin 2 С = 1 АС – расстояние от верха статуи до глаз человека, АН – высота статуи, sin С - синус угла падения взгляда. А С Н А С Н
Тригонометрия в физике Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), называются гармоническими колебаниями. Выражение, стоящее под знаком косинуса или синуса, называется фазой колебания:
На рисунке изображены колебания маятника, он движется по кривой, называемой косинусом.
Тригонометрия и тригонометрические функции в медицине и биологии. Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов. Биологические ритмы, биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов. Основной земной ритм – суточный. Модель биоритмов можно построить с помощью тригонометрических функций.
Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).
Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.
Тригонометрия в архитектуре Детская школа Гауди в Барселоне
Сантьяго Калатрава Винодельня «Бодегас Исиос»
Феликс Кандела Ресторан в Лос-Манантиалесе
Тригонометрия в музыке Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики. Частоты, соответствующие одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8… диатоническая гамма 2:3:5
Теория радуги Радуга возникает из-за того, что солнечный свет испытывает преломление в капельках воды, взвешенных в воздухе по закону преломления: n 1 - показатель преломления первой среды n 2 - показатель преломления второй среды αβ α-угол падения, β-угол преломления света sin α / sin β = n 1 / n 2
Северное сияние Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром. Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.
Спасибо за внимание.