Выполнила: Есенбай Алтын, 102 Фарм Проверил: Калиева Ж.А АО «Медицинский университет Астана» Кафедра мед биофизики и основы безопасности жизнедеятельности
Введение Механические свойства мышц Молекулярный механизм сокращения Механизм мышечного сокращения Закон Гука Механизм мышечного сокрашение Кальциевый насос Заключение Литература
Основная функция мышц состоит в преобразовании химической энергии в механическую работу или силу. Главными биомеханическими показателями, характеризующими деятельность мышцы, являются: а) сила, регистрируемая на ее конце (эту силу называют натяжением или силой тяги мышцы)1, и б) скорость изменения длины. При возбуждении мышцы изменяется ее механическое состояние; эти изменения называют сокращением. Оно проявляется в изменении натяжения и (или) длины мышцы, а также других ее механических свойств (упругости, твердости и др.). Механические свойства мышц.
Закон Гука раскрывает вязь между напряжением и деформацией упругой среды. Применяется исключительно в отношении малых напряжений и деформаций. В некоторых средах закон Гука не применяется вовсе. Если взять тонкий стержень, который будут растягивать, то закон можно записать в виде формулы: F=-kх где: F–сила натяжения стержня; х - удлинение стержня; k - коэффициент упругости (жесткость); Закон Гука.
Мышечное сокращение – укорочение мышцы, в результате которого она производит механическую работу. М. с. обеспечивает способность животных и человека к произвольным движениям. Наиболее важная составная часть мышечной ткани - белки (16,5-20,9%), в том числе контрактильные, обусловливающие способность мышцы к сокращению. Важные данные, характеризующие физико-химические и биохимические свойства механоактивных мышечных белков, были получены А. Я. Данилевским ( ). В 1-й половине 20 в. В. А. Энгельгардт и М. Н. Любимова (1939) установили, что основной контрактильный белок мышц - миозин - обладает аденозинтрифосфатазой активностью, а А. Сент-Дьёрдьи и Ф. Б. Штрауб показали ( ), что входящий в состав миофибрилл белок состоит в основном из 2 компонентов - миозина и актина.
Са 2+ насос плазмалеммы, который удаляет ионы Са 2+ из цитоплазмы в межклеточное пространство, был открыт в 1966 году Недавно был разработан двух флуоресцентный микрокапельный метод, позволяющий одновременно измерять [Ca2+]i и выход Са 2+ наружу на одиночных клетках. Исследования, проведенные с помощью данного метода на нейронах моллюска и секреторных клетках, показали, что активность Са 2+ насоса плазмалеммы контролируется непосредственно [Ca2+]i: увеличение концентрации цитоплазматического кальция активирует Са 2+ насос. В нейронах моллюска около 40% ионов кальция, входящих в клетку в ответ на деполяризацию мембраны, выводится из нейрона уже во время фазы нарастания [Ca2+]i, отражая таким образом активацию кальциевого насоса плазмалеммы увеличением концентрации цитозольного Са 2+. Кальциевый насос плазмалеммы.
Биофизика мышечного сокращения и вопросы регуляции двигательных функций млекопитающих и человека всегда являлись традиционными проблемами молекулярной биофизики, биофизики клетки и биофизики сложных систем. Решение задач, возникающих в этом разделе биофизики, традиционно базировалось на исследованиях математических моделей процессов. Существенно, что решение подобных проблем в рамках биофизического подхода обеспечивает не только раскрытие механизмов мышечного сокращения и регуляции движений, но и дает информацию для решения целого ряда прикладных задач. Наиболее значимые из них - это задачи повышения физической работоспособности человека и проблема развития мышечного утомления, в частности, у спортсменов, учащихся, работников физического и умственного труда. Все это составляет основу биофизики и физиологии трудовых процессов и связано с целым рядом клинических аспектов, так как патологии мышц - это большой класс различных заболеваний опорно-двигательного аппарата.
Губанов Н.И., Утепбергенов А.А. Медицинская биофизика
Спасибо за внимание!