ДВУГРАННЫЕ УГЛЫ. Определение двугранного угла Двугранным углом называется фигура, образованная двумя не принадлежащим одной плоскости полуплоскостями,

Презентация:



Advertisements
Похожие презентации
ДВУГРАННЫЕ УГЛЫ. ЦЕЛИ УРОКА: ВВЕСТИ ПОНЯТИЕ ДВУГРАННОГО УГЛА И ЕГО ЛИНЕЙНОГО УГЛА; РАССМОТРЕТЬ ЗАДАЧИ НА ПРИМЕНЕНИЕ ЭТИХ ПОНЯТИЙ; СФОРМИРОВАТЬ КОНСТРУКТИВНЫЙ.
Advertisements

Презентация к уроку по геометрии (10 класс) по теме: Презентация "Двугранный угол"
Геометрия 10 «А» класс геометрическая фигура, состоящая из двух полуплоскостей с общей границей, не развернутых в одну плоскость DABC DBCA.
Верно ли, что две прямые, параллельные одной плоскости, перпендикулярны (две прямые, перпендикулярные к одной плоскости, параллельны). 2.Может.
Рассмотрим два полупространства, образованных непараллельными плоскостями Пересечение этих полупространств будем называть двугранным углом Прямую, по.
Двугранный угол. Перпендикулярность плоскостей.. Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а,
Рассмотрим два полупространства, образованных непараллельными плоскостями Пересечение этих полупространств будем называть двугранным углом Двугранный.
Тема урока: Двугранный угол. Угол между плоскостями.
Углы в пространстве Подготовила учитель математики Горловской школы І – ІІІ ступеней 42 Рыбина М.В.
Двугранный угол. Перпендикулярность плоскостей. Автор: Елена Юрьевна Семёнова МБОУ СОШ 5 – «Школа здоровья и развития» г.Радужный.
ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ Определение Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой.
Двугранный угол. Перпендикулярность плоскостей. Автор: Елена Юрьевна Семёнова МОУ СОШ 5 – «Школа здоровья и развития» г.Радужный.
Перпендикулярность прямых Перпендикулярность прямой и плоскости. Перпендикулярность плоскостей Проверь себя Преподаватель математики ОГБОУ ПЛ 1 г.Иваново.
Расстояние от точки до прямой – длина перпендикуляра, опущенного из точки А на прямую. a Н А Расстояние от точки до плоскости – длина перпендикуляра ПовторениеНА.
Двугранный угол. Признак перпендикулярности двух плоскостей Геометрия 10.
ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМЫХ И ПЛОСКОСТЕЙ УЧЕБНОЕ ПОСОБИЕ ПО ГЕОМЕТРИИ ДЛЯ 10 КЛАССА ВЫПОЛНИЛА УЧЕНИЦА 10 Б КЛАССА ГИМНАЗИИ 4 ИНШИНА МАША.
Определение Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90 0.
Расположение точек на рёбрах куба (простейшие случаи) На рёбрах, выходящих из одной вершины На параллельных ребрах На скрещивающихся рёбрах М Т К М К Т.
ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
Урок 15 Плоскость перпендикуляров. Два равнобедренных треугольника АВС (\АВ\ = \АС\) и АDЕ (|AD| = \АЕ\) имеют общую медиану, проведенную из вершины A,
Транксрипт:

ДВУГРАННЫЕ УГЛЫ

Определение двугранного угла Двугранным углом называется фигура, образованная двумя не принадлежащим одной плоскости полуплоскостями, имеющими общую границу – прямую. ребро грани Полуплоскости, образующие двугранный угол, называются его гранями. Общая граница этих полуплоскостей – ребром двугранного угла.

В обыденной жизни, форму двугранного угла имеют

Обозначение двугранного угла. А В С D Угол CBDA

Измерение двугранных углов. Линейный угол. А В М D Р С АВМС = Р Угол Р – линейный угол двугранного угла АВМС Величиной двугранного угла называется величина его линейного угла.

Линейным углом двугранного угла называется сечение двугранного угла плоскостью, перпендикулярной ребру. А С В D О

Способ нахождения (построения) линейного угла. 1. Найти ( увидеть) ребро и грани двугранного угла 2. В гранях найти направления ( прямые) перпендикулярные ребру 3. (при необходимости) заменить выбранные направления параллельными им лучами с общим началом на ребре двугранного угла При изображении сохраняется параллельность и отношение длин параллельных отрезков

Величина линейного угла не зависит от выбора его вершины на ребре двугранного угла. A B O A1A1 O1O1 B1B1

Двугранный угол является острым, прямым или тупым, если его линейный угол соответственно острый, прямой или тупой. β а β а β

Аналогично тому, как и на плоскости, в пространстве определяются смежные и вертикальные двугранные углы. γ а β β β1β1 а 1

АС АСР и АСВ прямая СВ перпендикулярна ребру СА ( по условию) В грани АСВ В грани АСР прямая СР перпендикулярна ребру СА ( по теореме о трех перпендикулярах) угол РСВ - линейный для двугранного угла с ребром АС

АС АСРи АСВ В грани АСВ прямая ВО перпендикулярна ребру СА ( по свойству равностороннего треугольника) В грани АСРпрямая РК перпендикулярна ребру СА ( по теореме о трех перпендикулярах) Угол РКВ - линейный для двугранного угла с РСАВ К

Задача 3 К М Р Т А) Двугранный угол РТМК: (1) ребро МТ, грани МТР и МТК (2) В грани МТРпрямая ТР перпендикулярна ребру МТ ( по определению прямой, перпендикулярной плоскости) В грани МТК прямая МК перпендикулярна ребру МТ ( по условию) В А С

Задача 3 К М Р Т В А С АВ параллельна РТ (по построению), а так как РТ перпендикулярна ребру МТ ( по доказанному), то АВ перпендикулярна ребру МТ (по лемме о связи параллельности и перпендикулярности) Аналогично ВС перпендикулярна ребру МТ. Значит, угол АВС – искомый

P K T M Задача 3 б) Двугранный угол РМКТ: (1) ребро МК, грани МКР и МКТ (2) В грани МТК прямая МТ перпендикулярна ребру МК ( по условию) В грани МКР прямая МР перпендикулярна ребру МК ( по теореме о трех перпендикулярах) Ответ. Угол РМТ - линейный для двугранного угла с РМКТ

Задача 3 T K P M в) Двугранный угол РТКМ: (1) ребро ТК, грани ТКМ и ТКР (2) В грани МТК МХ прямая МХ, где Х – середина КТ, перпендикулярна ребру КТ ( по свойству равнобедренного треугольника) Х В грани КРТ РТ прямая РТ перпендикулярна ребру КТ ( по определению прямой перпендикулярной плоскости) У

Задача 3 M P K T Х У в) Двугранный угол РТКМ: УХ 3) Построим прямую УХ параллельно прямой РТ, она будет лежать в плоскости РКТ (почему?) получим, что прямая ХУ перпендикулярно ребру КТ (по лемме о связи параллельности и перпендикулярности) Значит, искомый угол УХМ