Кривые второго порядка Общее уравнение кривой второго порядка Окружность Эллипс Гипербола Парабола
Общее уравнение кривой второго порядка К кривым второго порядка относятся: эллипс, частным случаем которого является окружность, гипербола и парабола. Они задаются уравнением второй степени относительно x и y: Общее уравнение кривой второго порядка В некоторых частных случаях это уравнение может определять также две прямые, точку или мнимое геометрическое место.
Эллипс Эллипсом называется геометрическое место точек, сумма расстояний от каждой из которых до двух точек той же плоскости F 1 и F 2, называемых фокусами, есть величина постоянная, равная 2 а, а середину отрезка F 1 F 2 – центром эллипса. y 0 х F1F1 F2F2 -c c M(x; y) r1r1 r2r2 Зададим систему координат и начало координат выберем в середине отрезка [F 1 F 2 ]
Эллипс b2b2 b2b2 b2b2 Каноническое уравнение эллипса
Гипербола Гиперболой называется геометрическое место точек, разность расстояний от каждой из которых до двух точек той же плоскости F 1 и F 2, называемых фокусами, есть величина постоянная, равная 2 а, а середину отрезка F 1 F 2 – центром гиперболы. y 0 х F1F1 F2F2 -c c M(x; y) r1r1 r2r2
Гипербола b2b2 b2b2 b2b2 Каноническое уравнение гиперболы После тождественных преобразований уравнение примет вид:
Пример Составить уравнение гиперболы, проходящей через точку А(6; -4), если ее асимптоты заданы уравнениями: Решим систему: Точка А лежит на гиперболе
Парабола y 0 х F M(x; y) d r Параболой называется геометрическое место точек на плоскости, для каждой из которых расстояние до некоторой фиксированной точки той же плоскости, называемой фокусом, равно расстоянию до прямой: Фиксированную прямую называют директриссой параболы.
Преобразование общего уравнения к каноническому виду Общее уравнение кривой называется пяти-членным, если 2Bxy=0: Приведение пяти-членного уравнения к каноническому виду рассмотрим на примере: