Тригонометрия раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Данный термин впервые появился в 1595 г.

Презентация:



Advertisements
Похожие презентации
История тригонометрии выполнили: ученицы 10 В класса Жданова Людмила Бабичева Роксана учитель: Мартюшова Валентина Алексеевна.
Advertisements

Выполнила : Семина Елена, обучающаяся 9 А класса МБОУ СОШ 6 г. о. Железнодорожный Руководитель проекта : Злобина Елена Григорьевна, учитель математики.
Возникновение тригонометрии Алгебра и начала анализа. 10 класс.
Слово « тригонометрия » впервые встречается в заглавии книги немецкого теолога и математика Питикуса. Что такое тригонометрия? Тригонометрия – математическая.
Соотношения между сторонами и углами треугольника Синус, косинус и тангенс острого угла прямоугольного треугольника Выполнил: Кузнецов Платон 8/2.
Выполнил: Кузнецов Платон 8/2. Синус Косинус Тангенс.
Тригонометрия – слово греческое Metrew - измеряю Trigwnon – треугольник Тригонометрия в буквальном переводе означает – измерение треугольников Возникновение.
Происхождение слов синус,косинус, тангенс
История тригонометрии ТАНГЕНС Злобина Карина Головина Люда 10 *Б*
И СТОРИЯ ТРИГОНОМЕТРИИ Куляев Владимир 10 «Б». С ОДЕРЖАНИЕ Определения История Синус, косинус, тангенс Дальнейшее развитие Аналитическая теория Список.
Работу выполнил: Субботин Антон Ученик 10 класса МБОУ «Тирянская СОШ»
Историческая справка Тригонометрия. Тригонометрия (от греч. τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел.
История развития тригонометрии B(x;y) Y X 0 R y/ x =sin.
Что означает название предмета «Алгебра и начала анализа?» Алгебра – один из разделов математики, изучающий свойства величин, выраженных буквами, независимо.
Тригономе́трия (от греч. τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел математики, в котором изучаются тригонометрические.
Тригонометрические функции. Историческая справка. Подготовил: Ученик 10 класса Резников Алексей.
Краткий обзор развитии тригонометрии. Тригонометрия возникла и развивалась в древности как одна из разделов астрономии, отвечающий практическим нуждам.
История тригонометрии Греция Индия Аравия Европа Презентацию подготовил: Ысманалы уулу Атабек.
Анатоль Франс Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом.
Что означает название предмета «Алгебра и начала анализа?» Алгебра – один из разделов математики, изучающий свойства величин, выраженных буквами, независимо.
Транксрипт:

Тригонометрия раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Данный термин впервые появился в 1595 г. как название книги немецкого математика Питискуса, а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, геодезии и архитектуре. Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела.

o История тригонометрии, как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур, охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.

Полуокружность называется единичной, если ее центр находится в начале координат, а радиус равен 1.

Косинус – это сокращение латинского выражения дополнительный синус Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс ( а также котангенс ) введен в 10 веке арабским математиком, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в 14 веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы ; благодаря его трудам сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Название « тангенс », происходящее от латинского касаться, появилось в 1583 г. переводится как « касающийся » Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника – творца гелиоцентрической системы мира, Тихо Браге, а также в работах математика Франсуа Виета, который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер, т. е. Факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов.

Начиная с 17 в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.