Тригономе́три я (от греч. τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Данный термин впервые появился в 1595 г. как название книги немецкого математика Бартоломеуса Питискуса ( ), а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, геодезии и архитектуре.
Тригонометрические вычисления применяются практически во всех областях геометрии, физики и инженерного дела. Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей,статистика, биология, медицина ( включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография.
Древняя Греция Древнегреческие математики в своих построениях, связанных с измерением дуг круга, использовали технику хорд. Перпендикуляр к хорде, опущенный из центра окружности, делит пополам дугу и опирающуюся на неё хорду. Половина поделенной пополам хорды это синус половинного угла, и поэтому функция синус известна также как «половина хорды». Благодаря этой зависимости, значительное число тригонометрических тождеств и теорем, известных сегодня, были также известны древнегреческим математикам, но в эквивалентной хордовой форме.
Первые тригонометрические таблицы были, вероятно, составлены Гиппархом Никейск им ( лет до н. э.) который сейчас известен как «отец тригонометрии». Гиппарх был первым, кто свёл в таблицы соответствующие величины дуг и хорд для серии углов. Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху и его таблице хорд. Возможно Гиппарх взял идею такого деления у Гипсикла, который ранее разделил день на 360 частей, хотя такое деление дня могли предложить и вавилонские астрономы.
Средневековая Индия Замена хорд синусами стала главным достижением средневековой Индии. Такая замена позволила вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии как учению о тригонометрических величинах.
Определение тригонометрических функций Синус отношение противолежащего катета к гипотенузе.Косинус отношение прилежащего катета к гипотенузе. Тангенс отношение противолежащего катета к прилежащему. Котангенс отношение прилежащего катета к противолежащему. Секанс отношение гипотенузы к прилежащему катету. Косеканс отношение гипотенузы к противолежащему катету.
Основным тригонометрическим тождеством в русскоязычных учебниках математики называют соотношение, выполняющееся для произвольного значения. Основное тригонометрическое тождество представляет собой запись теоремы Пифагора для треугольника в тригонометрическом круге; длины катетов этого треугольника по модулю равны соответствующим синусу и косинусу, а гипотенуза, будучи радиусом тригонометрического круга, равна единице.