Анализ тренировочной работы по 2 11 класс. 2. 4.

Презентация:



Advertisements
Похожие презентации
В D1D1 F А D С А 1 А 1 В 1 В 1 С 1 С 1 L M K 2007 г вар. 3 Дан прямоугольный параллелепипед АВСDА 1 В 1 С 1 D 1 с основанием АВСD. На ребрах АD, А 1 В.
Advertisements

С D А 6 B 8 D 6 А В D1D1 С 1 С 1 В 1 В 1 А 1 А 1 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 известны ребра АВ=8, АD=6, СС 1 =5. Найдите угол между.
Р О М А В С S F R Построить: сечение тетраэдра плоскостью (MОР)
Задача. Основание прямой четырехугольной призмы прямоугольник АВСD, в котором АВ=5, АD=33. Найдите тангенс угла между плоскостью грани АА 1 DD 1 призмы.
Плоскости и пересекаются по прямой a и перпендикулярны к плоскости. Докажите, что прямая а перпендикулярна к плоскости a.
Диагностическая работа по математике
Задача 1. М Р К А А 1 А 1 В В 1 В 1 D D1D1 С С 1 С 1 Построение: 1). Соединим т.Р и т.К (т.к. они лежат в одной плоскости А 1 В 1 С 1 D 1 ). Получим РК.
A C D A1A1 D1D1 C1C1 1 1 B B1B1 Многоугольник, вершины которого лежат на рёбрах многогранника, а стороны – отрезки боковых граней, называется сечением.
Площадью полной поверхности призмы площадью боковой поверхности призмы Площадью полной поверхности призмы называется сумма площадей всех граней, а площадью.
Задача 3. A A1A1 B B1B1 C C1C1 D D1D1 M F E Дано: точки А 1 - вершина, М – на ребре В 1 С 1, N – на ребре DD 1. Построение: 1). Соединим т.А 1 и т.N (т.к.
П р я м о у г о л ь н ы й п а р а л л е л е п и п е д.
Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен Две пересекающиеся плоскости называются.
Построить сечение параллелепипеда ABCDA 1 B 1 C 1 D 1 плоскостью, проходящей через точки P, Q, R, принадлежащие ребрам AA 1, BB 1, CC 1 соответственно.
Сторона основания правильной треугольной призмы равна 8 см, боковое ребро равно 6 см. Найдите площадь сечения, проходящего через сторону верхнего основания.
Некоторые следствия из аксиом. А А 1 А 1 B D C B1B1 C1C1 D1D1 ? ? ? Пересекает ли прямая ВА 1 с прямыми DD 1, АD 1 и DC?
A a II расстоянием между скрещивающимися прямыми. Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно.
Построение сечений параллелепипеда Автор презентации Мартусевич Т.О.
Построение сечений.. Куб. Уровень А. Куб. Уровень В. Куб. Уровень С. Параллелепипед. Уровень А. Параллелепипед. Уровень В. Параллелепипед. Уровень С.
Точка К – середина ребра АА 1 куба АВСDA 1 B 1 C 1 D 1. Найдите угол между прямыми А 1 В и СК. D АВ С А 1 А 1 D1D1 С 1 С 1 В 1 В 1 Если в кубе не дано.
Учитель 1 категории Попова В.В. МБОУ СОШ 3. Тетраэдр Тетраэдр – поверхность, составленная из четырех треугольников. многогранником Поверхность, составленную.
Транксрипт:

Анализ тренировочной работы по 2 11 класс

2.

4.

6.

7.

8.

10.

Тангенс

12.

13.

Чтобы найти наибольшее или наименьшее значение функции на промежутке, надо: хаx0x0 b уy(a)y(x 0 )y(b)

14. Найдите наименьшее значение функции: на [-2; 0]. [-2; 0]. х-20 у 648

14. Найдите наибольшее значение функции: х 0 у 39

15.

16. В п/у параллелепипеде известны ребра АВ = 5, АД = 4, АА 1 = 9. Точка О принадлежит ребру ВВ 1 и делит его в отношении 4:5, считая от вершины В. Найдите площадь сечения этого пар-педа плоскостью, проходящей через точки А, О, С 1.

АD С В B1B1 С1С1 D1D1 А1А1 О О1О

16.16.