БОУ ЧР СПО «Чебоксарский электромеханический колледж» Тема: «Интеграл и его практическое применение» Сближение теории с практикой дает самые благоприятные результаты, и не одна только практика от этого выигрывает, сами науки развиваются под влиянием ее. П. Л. Чебышев
Выполнил: Муляев Николай, Студент группы И3-14 Чебоксары 2015
Немного истории г, опубликовано в 1686 г ввел Г.Лейбниц г, Ж Лагранж 5 век до н.э. др.гр. ученый Демокрит 3-4 век до н.э. Архимед ввел метод исчерпывания
Евдокс Книдский 408 – 355 до н. э Архимед 287 – 212 до н.э.
«Интеграл» придумал Я. Бернулли (1690) «восстанавливать» от латинского integro «целый» от латинского integer
Исаак Ньютон ( )
Лейбниц Готфрид Вильгельм ( ) « Общее искусство знаков представляет чудесное пособие, так как оно разгружает воображение… Следует заботиться о том, чтобы обозначения были удобны для открытий. Обозначения коротко выражают и отображают сущность вещей. Тогда поразительным образом сокращается работа мысли.» Лейбниц
Площадь фигуры Объем тела вращения Работа электрического заряда Работа переменной силы Масса Перемещение Дифференциальное уравнение Давление Количество теплоты
Задача.Найти объём наклонной треугольной призмы с основанием S и высотой h.. Введём ось ОХ перпендикулярно основаниям призмы. 1. Введём ось ОХ перпендикулярно основаниям призмы. 2. (АВС) OX=a, a=0, (A 1 B 1 C 1 ) OX=b, b=h 3. Проведём плоскость перпендикулярно ОХ через точку с абсциссой х. А 2 В 2 С 2 -треугольник, равный основаниям. Площадь А 2 В 2 С 2 равна S. Ответ: V=Sh. S(x) непрерывна на [0;h] 4. S(x) непрерывна на [0;h] 5. С АВ А1А1 В1В1 С1С1 Х h 0 * * *x C2C2 A2A2 B2B2
Из эксперимента известно, что скорость размножения бактерий пропорциональна их количеству. За какое время количество бактерий увеличится в m раз по сравнению с начальным? Решение: Пусть x(t) – количество бактерий в момент времени t. x(0) = x 0. Изменение количества бактерий со временем описывается уравнением x´(t) = kx(t), k>0,, ln|x| = kt+ln|C|, x=e kt e ln|C|, x=Ce kt - общее решение уравнения. ЗАДАЧА
y=-ω²y – дифференциальное уравнение гармонических колебаний. ω – заданное положительное число y=y(x) y=(y(x)) Решением являются функции: Y(x)=Asin(ωx + φ), где A – амплитуда колебания, ω – частота, φ – начальная фаза. Графиком гармонических колебаний является синусоида
Уже Архимед успешно находил площади фигур, несмотря на то, что в математике его времени не было понятия интеграла Но лишь интегральное исчисление дает общий метод решения задач из различных областей наук. Недаром даже поэты воспевали интеграл. Смысл- там, где змеи интеграла Меж цифр и букв, меж d и f. Там – власть, там творческие горны! Пред волей чисел все – рабы. И солнца путь вершат, покорны Немым речам и ворожбы. В.Брюсов. Смысл- там, где змеи интеграла Меж цифр и букв, меж d и f. Там – власть, там творческие горны! Пред волей чисел все – рабы. И солнца путь вершат, покорны Немым речам и ворожбы. В.Брюсов.
Заключение Применение физических моделей при введении понятия интеграла, рассмотрении его свойств, отработке техники интегрирования и изучении приложений способствует осознанному качественному усвоению материала, развитию правильного представления об изучаемом понятии, его огромной значимости в различных науках, формированию мировоззрения, таких специальных качеств, как умение строить математические модели реальных процессов и явлений, исследовать и изучать их, а, следовательно, способствует развитию мышления, памяти, внимания и речи.