ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ И ТАБЛИЦЫ ИСТИННОСТИ Сложные высказывания можно записывать в виде формул. Для этого простые логические высказывания нужно обозначить.

Презентация:



Advertisements
Похожие презентации
Алгебра высказываний. ИМПЛИКАЦИЯ (логическое следование) Если будет дождь, то мы не пойдем на улицу. Если сегодня четверг, то завтра пятница. Если на.
Advertisements

1. Подсчитать количество переменных в логическом выражении. 2. Определить число строк в таблице m = 2 n 3. Подсчитать количество логических операций в.
П ОСТРОЕНИЕ ТАБЛИЦ ИСТИННОСТИ ДЛЯ СЛОЖНЫХ ВЫСКАЗЫВАНИЙ. Подготовила учитель информатики высшей категории Габриэль Татьяна Васильевна.
Таблица истинности составных высказываний – это таблица, которая показывает какие значения принимает составное высказывание при всех сочетаниях значений.
Презентация составлена Сырцовой С.В. Часть 2. Проверим домашнее задание 18 – записать на доске Какие логические операции вам известны? Какими знаками.
ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ И ТАБЛИЦЫ ИСТИННОСТИ ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ Каждое составное высказывание можно выразить в виде формулы (логического выражения), в.
Алгоритм построения таблицы истинности: 1.подсчитать количество переменных n в логическом выражении; 2.определить число строк в таблице, которое равно.
Алгоритм построения таблицы истинности: 1.подсчитать количество переменных n в логическом выражении; 2.определить число строк в таблице, которое равно.
ГБПОУ «МСС УОР 2» Москомспорта Преподаватель информатики Володина М.В г.
- Построение логических выражений - Приоритет логических операций - Алгоритм построения таблицы истинности.
Логические выражения и таблицы истинности. Логические выражения Логическое выражение – логическая форма, содержащая одну или несколько переменных, соединенных.
Построение таблиц истинности логических выражений.
Для определения истинности или ложности сложного логического выражения используют таблицы истинности. Количество строк напрямую зависит от количества.
Основы алгебры логики. Лекция 2. Алгоритм построения таблицы истинности 1. Подсчитать количество переменных n в логическом выражении; 2. Определить число.
Сложные высказывания можно записывать в виде формул. Для этого простые логические высказывания нужно обозначить как логические переменные буквами и связать.
МОУ СОШ 7 п.Коммаяк Кировского района Ставропольского края Учитель высшей квалификационной категории Куликова Татьяна Ивановна.
Входные данные / ввод переменных в логическую схему Выполнение операции ИНВЕРСИЯ А В (0/1) А = 1 0 А = 0 1.
Таблицы истинности.. Решение логических задач принято записывать в виде таблиц истинности – таблиц, в которых по действиям показано, какие значения принимает.
Автор: Доронина Екатерина Валерьевна, МКОУ СОШ 1, Г. Коркино Логические выражения и таблицы истинности.
Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических.
Транксрипт:

ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ И ТАБЛИЦЫ ИСТИННОСТИ Сложные высказывания можно записывать в виде формул. Для этого простые логические высказывания нужно обозначить как логические переменные буквами и связать их с помощью знаков логических операций. Такие формулы называются логическими выражениями. Например: Чтобы определить значение логического выражения необходимо подставить значения логических переменных в выражение и выполнить логические операции. Операции в логическом выражении выполняются слева направо с учетом скобок в следующем порядке: 1. инверсия; 2. конъюнкция; 3. дизъюнкция; 4. импликация и эквивалентность. Для изменения указанного порядка выполнения логических операций используются круглые скобки.

1. Подсчитать количество переменных в логическом выражении. 2. Определить число строк в таблице m = 2 n 3. Подсчитать количество логических операций в формуле. 4. Установить последовательность выполнения логических операций с учетом скобок и приоритетов. 5. Определить количество столбцов в таблице: число переменных плюс число операций. 6. Выписать наборы входных переменных с учетом того, что они представляют собой натуральный ряд n-разрядных двоичных чисел от 0 до 2 n Заполнить таблицу истинности по столбикам, выполняя логические операции в соответствии с установленной последовательностью.

Учимся составлять таблицу истинности сложных выражений 1. Необходимо определить количество строк в таблице истинности. количество строк = 2 n, где n – количество логических переменных F = (AvB) & (A^B)F = (A ^ B) & (A v B)

Учимся составлять таблицу истинности сложных выражений F = (AvB) & (A^B) 2. Необходимо определить количество столбцов в таблице истинности, которое равно количеству логических переменных плюс количество логических операций. F = (A ^ B) & (A v B)

Учимся составлять таблицу истинности сложных выражений F = (AvB) & (A^B) 3. Необходимо ввести названия столбцов таблицы в соответствии с последовательностью выполнения логических операций с учетом скобок и приоритетов; ABA ^ BA v B(A^B) & (AvB) F = (A ^ B) & (A v B)

Учимся составлять таблицу истинности сложных выражений F = (AvB) & (A^B) 4. Заполнить столбцы входных переменных наборами значений ABA ^ BA v B(A^B) & (AvB) F = (A ^ B) & (A v B)

Учимся составлять таблицу истинности сложных выражений F = (AvB) & (A^B) 5. Провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии с установленной последовательностью. ABA ^ BA v B(A^B) & (AvB) F = (A ^ B) & (A v B)

Учимся составлять таблицу истинности сложных выражений F = (AvB) & (A^B) ABA ^ BA v B(A^B) & (AvB) Провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии с установленной последовательностью. F = (A ^ B) & (A v B)

Учимся составлять таблицу истинности сложных выражений F = (AvB) & (A^B) ABA ^ BA v B(A^B) & (AvB) Провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии с установленной последовательностью. F = (A ^ B) & (A v B)

Составить таблицу истинности логического выражения А * (В + В * С)

Таблица истинности логического выражения