Пифагор – древнегреческий ученый, живший в VI веке до нашей эры. Вообще надо заметить, что о жизни и деятельности Пифагора, который умер две с половиной.

Презентация:



Advertisements
Похожие презентации
Пифагор – древнегреческий ученый, живший в VI веке до нашей эры. Вообще надо заметить, что о жизни и деятельности Пифагора, который умер две с половиной.
Advertisements

28.11 Пифагор Самосский ( гг. до н. э.) древнегреческий философ и математик, создатель религиозно-философской школы пифагорейцев. Историю жизни.
1. Познакомиться с историей открытия и доказательства теоремы Пифагора. 2. Рассмотреть два способа доказательства теоремы Пифагора. 3. Познакомиться с.
Исторический экскурс Рассказ о Пифагоре Пифагор жил в VI в. до н. э. в Древней Греции Основал философскую школу – пифагорейский союз.
Теорема Пифагора Работа учащегося 8-Б класса Петрова Ивана.
Какой треугольник изображен на рисунке? M K P. a b c Чем является отрезок a ?
«Пребудет вечной истина, Как скоро её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век». Шамиссо.
Урок геометрии в 8-м классе "Теорема Пифагора" Тип урока: урок изучения нового материала.
МОУ Алексеевская СОШ, Плешакова Ольга Владимировна.
Хотя эта теорема и связывается с именем Пифагора, она была известна задолго до него. В вавилонских текстах эта теорема встречается за 1200 лет до него.
Теорема Пифагора Выполнил ученик 4 «Б» касса Кирбетов Эрдэм.
Пифагор Выполнила: ученица 8а класса Романовской школы Кузьменко Ирина 2013 г.
ПИФАГОР ПИФАГОР САМОССКИЙ - Древнегреческий философ, религиозный и политический деятель, основатель пифагореизма, математик. Пифагору приписывается изучение.
ТЕМА: Теорема Пифагора.. Цель урока: Изучить теорему Пифагора и научиться применять ее при решении задач. Пифагор древнегреческий ученый VI в. до н.э.
7 класс МОУ «Морозовская средняя общеобразовательная школа» Учитель: Пищалёва В.С. Март. 2009год.
Если дан нам треугольник И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдем: Катеты в квадрат возводим, Сумму степеней находим И таким.
Теорема Пифагора Курсовая работа учителя математики гимназии 343 Невского района Инны Викторовны Красовой.
Проект – презентация на тему: «Доказательства теоремы Пифагора» Выполнила: ученица 8 «А» класса МОУ СОШ 2 Шишкина Е.
Теорема Пифагора
ТЕОРЕМА ПИФАГОРА МАОУ Гимназия 70, г. Екатеринбург Геометрия 8 класс Автор : Мавлютова Л. Р.
Транксрипт:

Пифагор – древнегреческий ученый, живший в VI веке до нашей эры. Вообще надо заметить, что о жизни и деятельности Пифагора, который умер две с половиной тысячи лет тому назад, нет достоверных сведений. Биографию учёного и его труды приходится реконструировать по произведениям других античных авторов, а они часто противоречат друг другу.

С именем Пифагора связано много важных научных открытий: в географии и астрономии – представление о том, что Земля – шар и что существуют другие, похожие на неё миры; в музыке – зависимость между длиной струны арфы и звуком, который она издаёт; в геометрии – построение правильных многоугольников (один из них пятиконечная звезда – стал символом пифагорейцев). Венчала геометрию теорема Пифагора, которой посвящён сегодняшний урок. Но изучение вавилонских клинописных таблиц и древних китайских рукописей показало, что это утверждение было известно задолго до Пифагора. Заслуга же Пифагора состояла в том, что он открыл доказательство этой теоремы.

Какой треугольник изображён? (Определите его вид) Назовите катеты и гипотенузу данного треугольника. Как найти площадь Δ АВС? В А С

1. На какие два многоугольника разбит данный многоугольник ABCDE? 2. Каким свойством площадей необходимо воспользоваться, чтобы найти площадь многоугольника ABCDE? 3. С помощью каких формул можно найти площадь квадрата ABCF и площадь треугольника DFE? 4. Запишите формулой площадь многоугольника ABCDE. В С D A E F

1. Постройте в тетрадях прямоугольный треугольник (с катетами, длина которых для удобства выражается целыми числами). 2. Измерьте катеты и гипотенузу. Результаты измерений запишите в тетрадях. 3. Возведите все результаты в квадрат, т. е. Узнайте величины a 2 ; b 2 ; c Сложите квадраты катетов (a 2 + b 2 ) и сравните с квадратом гипотенузы. 5. У всех ли получилось, что a 2 + b 2 = с 2 ?

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов c 2 = a 2 + b 2 a c b

Если дан нам треугольник, И притом с прямым углом. То квадрат гипотенузы Мы всегда легко найдём: Катеты в квадрат возводим, Сумму степеней находим – И таким простым путём К результату мы придём. (И. Дырченко)

3 4 х х 5 5 4

1. Найти: ВС С В А Дано: 8 см 6 см ?

2. Дано: С В Найти: ВС А 5 см 7 см ?

3.3. Дано: Найти: А B C D ? 12 см 13 см

1. Возможно ли было решение задач данного типа без применения теоремы Пифагора? 2. В чём суть теоремы Пифагора? 3. Для любых ли треугольников можно применить данную теорему?

4. В Древнем Египте был известен треугольник со сторонами 3, 4, 5; его использовали при разметке прямоугольных земельных участков после ежегодного уничтожения их границ разлившимся Нилом. Для построения прямых углов египтяне поступали так: на веревке делали метки, делящие ее на 12 равных частей, связывали концы веревки и растягивали на земле с помощью кольев в виде треугольника со сторонами 3, 4 и 5. Тогда угол между сторонами, равными 3 и 4, оказывался прямым. 5. Занимаясь поисками треугольников, стороны которых a, b, c удовлетворяли бы условию a 2 + b 2 = c 2, Пифагор нашел формулы, которые в современной символике могут быть записаны так: a = 2n + 1, b = 2n(n + 1), c = 2n 2 + 2n + 1, n Є Z. 6. Треугольник с такими сторонами является прямоугольным: n = 1: а = 3, b = 4, с = 5 (приведите примеры самостоятельно). 7. Где применяется, по вашему, сейчас теорема Пифагора?

П ( б,в); 484 ( а,б,в)