Арифметические действия с обыкновенными дробями..

Презентация:



Advertisements
Похожие презентации
Все действия с дробями 1.Сложение и вычитание дробей 2.Сложение и вычитание смешанных чисел 3.Умножениедробей 4.Умножение смешанных чисел 5.Деление дробей.
Advertisements

Дроби Дробь – это есть частное, делимое – числитель дроби, делитель – знаменатель. дроби. Любое натуральное число можно записать в виде дроби с любым натуральным.
M n Числитель дроби Знаменатель дроби Черта дроби 1) Какая дробь называется обыкновенной?
РАЦИОНАЛЬНЫЕ ДРОБИ. Лейман Карины.. Сумма дробей с одинаковыми знаменателями. Чтобы сложить рациональные дроби с одинаковыми знаменателями, надо сложить.
Арифметические действия со смешанными дробями. 1. Сложение смешанных дробей. 2. Вычитание смешанных дробей. 3. Умножение смешанных дробей. 4. Деление смешанных.
Учитель математики Руденко Г. М. ГОУ СОШ 824 г. Москва.
Содержание 1) Дроби. Числитель и знаменатель 2) Основное свойство дроби. Сокращение дробей 3) Сравнение дробей с одинаковым знаменателем 4) Сравнение дробей.
Автор: Шарова Валентина Степановна Учитель математики МОУ «СОШ 4» город Новочебоксарск Чувашской Республики Повторяем математику… Справочник Презентация.
Преобразование рациональных выражений. Произведение степеней Если а- число, отличное от нуля, а m, п – целые числа, то При умножении степеней с одинаковыми.
Применение распределительного свойства умножения.
Тема: -систематизирование и выявление уровня ЗУН учащихся; -привитие навыков самостоятельной работы, -воспитание адекватной самооценки и коммуникативных.
Урок – л е к ц и я А л г е б р а – 8 А л г е б р а – 8 Автор: Аксенова И.Л. Автор: Аксенова И.Л.
Как умножить дробь на натуральное число? Чтобы умножить дробь на натуральное число, надо её числитель умножить на это число, а знаменатель оставить без.
Оценочный лист Фамилия, имя, класс Этапы работы Домашняя работа 1 этап 2 этап 3 этап 4 этап 5 этап Общий балл «5» баллов, «4» баллов, «3»
Урок по математике. ВОКЗАЛ СЛОЖЕНИЕ, ВЫЧИТАНИЕ УМНОЖЕНИЕ ДЕЛЕНИЕ УРАВНЕНИЕ Это интересно.
Урок-презентация по математике 5 класс «Обыкновенные дроби»
«Что мы знаем о дробях» Цели урока: повторить, обобщить и закрепить знания учащихся об обыкновенных дробях и действиях с ними; способствовать развитию.
Алгебраические выражения. Алгебраическое выражение -
Умножение дробей.. Умножение дроби на натуральное число. Определение. Чтобы умножить дробь на натуральное число, надо числитель умножить на число, а знаменатель.
Числитель знаменатель Знаменатель показывает на сколько равных частей разделили. Числитель показывает сколько таких частей взяли числитель знаменатель.
Транксрипт:

Арифметические действия с обыкновенными дробями.

Расширение дроби Значение дроби не меняется, если умножить её числитель и знаменатель на одно и то же число, отличное от нуля. Это преобразование называется расширением дроби. Например,

Расширение дроби

Сокращение дроби. Значение дроби не меняется, если разделить её числитель и знаменатель на одно и то же число, отличное от нуля. Это преобразование называется сокращением дроби. Например,

Сокращение дроби.

Сравнение дробей. Из двух дробей с одинаковыми числителями та больше, знаменатель которой меньше:

Из двух дробей с одинаковыми знаменателями та больше, числитель которой больше:

Для сравнения дробей, у которых числители и знаменатели различны, необходимо расширить их, чтобы привести к общему знаменателю. П р и м е р. Сравнить две дроби:

Р е ш е н и е.Расширим первую дробь на знаменатель второй, а вторую - на знаменатель первой: Использованное здесь преобразование называется приведением дробей к общему знаменателю.

Сложение и вычитание дробей. Если знаменатели дробей одинаковы, то для того, чтобы сложить дроби, надо сложить их числители, а для того, чтобы вычесть дроби, надо вычесть их числители (в том же порядке). Полученная сумма или разность будет числителем результата; знаменатель останется тем же. Если знаменатели дробей различны, необходимо сначала привести дроби к общему знаменателю. При сложении смешанных чисел их целые и дробные части складываются отдельно. При вычитании смешанных чисел мы рекомендуем сначала преобразовать их к виду неправильных дробей, затем вычесть из одной другую, а после этого вновь привести результат, если требуется, к виду смешанного числа.

Пример:

Умножение дробей. Умножить некоторое число на дробь означает умножить его на числитель и разделить произведение на знаменатель. Следовательно, мы имеем общее правило умножения дробей: для перемножения дробей необходимо перемножить отдельно их числители и знаменатели и разделить первое произведение на второе.

Пример.

Деление дробей Для того, чтобы разделить некоторое число на дробь, необходимо умножить это число на обратную дробь. Это правило вытекает из определения деления

Пример.

Благодарю за внимание!