Метод Гаусса для решения систем линейных уравнений 10.11.2014 г.

Презентация:



Advertisements
Похожие презентации
3. Ранг матрицы Элементы линейной алгебры. Ранг матрицы (1) Минором к – го порядка матрицы А называется определитель к – го порядка с элементами, стоящими.
Advertisements

Системы линейных уравнений. Метод Гаусса. Системой m линейных уравнений с n неизвестными х 1, х 2, …, х n называется система вида a ij - коэффициенты.
Метод Гаусса (метод исключения неизвестных) Две системы называются эквивалентными (равносильными) если их решения совпадают. К эквивалентной системе можно.
Выполнил ст. гр. СБ Б. Немченко Сергей.. Что такое матрица ? Карл Фридрих Гаусс Метод Гаусса Использованные источники информации.
Системы линейных уравнений.. Системой m линейных уравнений с n неизвестными х 1, х 2, …, х n называется система вида a ij - коэффициенты системы, i=1,…,m;
Тема 1 «Элементы линейной и векторной алгебры» Кафедра математики и моделирования Старший преподаватель Г.В. Аверкова Курс «Высшая математика» Понятия.
§2 РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ 2.1 Системы линейных уравнений Линейной системой m уравнений с n неизвестными х 1, х 2,…х n называется.
Метод Гаусса (метод исключения неизвестных) Две системы называются эквивалентными (равносильными) если их решения совпадают. К эквивалентной системе можно.
Лектор Белов В.М г. Тема: Системы линейных уравнений. Системы однородных уравнений.
Матрицы Элементарные преобразования и действия над матрицами made by aspirin.
1. МАТРИЦЫ И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ 1.1. Матрицы. Действия с матрицами Определение 1.1. Таблица вида: (1.1) в которой все – заданные числа, называется.
Занятие 1. Матрицы Виды матриц Действия над ними.
Метод Гаусса решения систем линейных уравнений. Рассмотрим систему m линейных уравнений с n неизвестными:
Линейная алгебра Метод Гаусса решения систем линейных уравнений Ранг матрицы Исследование систем линейных уравнений Однородные системы линейных уравнений.
§ 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы A называется ее базисным минором, если он отличен от нуля, а все миноры матрицы A более высокого порядка.
Метод Гаусса Выполнил Межов В.С. Группа СБ
Нахождение фундаментального решения. Подготовила: Колосова Светлана. Принял: Адашев Д.К.
Системы n линейных уравнений с n неизвестными. Определение: Определение. Система n уравнений с n неизвестными в общем виде записывается следующим образом:
Тема 5. «Системы линейных уравнений» Основные понятия: 1.Общий вид, основные понятия, матричная форма 2.Методы решения СЛУ 3.Теорема Кронекера-Капелли.
Системы m линейных уравнений с n неизвестными. Определение: Определение. Система m уравнений с n неизвестными в общем виде записывается следующим образом:
Транксрипт:

Метод Гаусса для решения систем линейных уравнений г.

Какая система уравнений называется совместной? Система уравнений называется совместной, если она имеет по крайней мере одно решение.

Какая система уравнений несовместна? Система уравнений несовместна, если она не имеет решений.

Какие системы называются эквивалентными? Две системы уравнений называются эквивалентными, если они обе несовместны или обе совместны и имеют одни и те же решения.

Назовите элементарные преобразования системы. перестановка местами уравнений системы; умножение любого уравнения системы на число, не равное нулю; прибавление к одному уравнению системы другого, умноженного на число.

Гаусс Карл Фридрих ( ) Выдающийся немецкий математик. Его труды глубоко повлияли на развитие математической мысли, которая была неизменной многие столетия. Гаусс занимался основной теоремой алгебры о количестве корней алгебраического уравнения.

Метод Гаусса Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к эквивалентной системе ступенчатого (или треугольного) вида (прямой ход), из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные (обратный ход).

Пример

Домашнее задание (по выбору) Уровень С: