Выполнила : Семина Елена, обучающаяся 9 А класса МБОУ СОШ 6 г. о. Железнодорожный Руководитель проекта : Злобина Елена Григорьевна, учитель математики.

Презентация:



Advertisements
Похожие презентации
Возникновение тригонометрии Алгебра и начала анализа. 10 класс.
Advertisements

Тригонометрия раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Данный термин впервые появился в 1595 г.
Тригонометрия – слово греческое Metrew - измеряю Trigwnon – треугольник Тригонометрия в буквальном переводе означает – измерение треугольников Возникновение.
История тригонометрии выполнили: ученицы 10 В класса Жданова Людмила Бабичева Роксана учитель: Мартюшова Валентина Алексеевна.
История тригонометрии ТАНГЕНС Злобина Карина Головина Люда 10 *Б*
И СТОРИЯ ТРИГОНОМЕТРИИ Куляев Владимир 10 «Б». С ОДЕРЖАНИЕ Определения История Синус, косинус, тангенс Дальнейшее развитие Аналитическая теория Список.
История развития тригонометрии B(x;y) Y X 0 R y/ x =sin.
Слово « тригонометрия » впервые встречается в заглавии книги немецкого теолога и математика Питикуса. Что такое тригонометрия? Тригонометрия – математическая.
Анатоль Франс Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом.
Соотношения между сторонами и углами треугольника Синус, косинус и тангенс острого угла прямоугольного треугольника Выполнил: Кузнецов Платон 8/2.
Происхождение слов синус,косинус, тангенс
Выполнил: Кузнецов Платон 8/2. Синус Косинус Тангенс.
История тригонометрии Греция Индия Аравия Европа Презентацию подготовил: Ысманалы уулу Атабек.
История развития тригонометрии B(x;y) Y X 0 R y/ x =sin Проект подготовили группа историков 10 « а » класса : Григоренко Игорь, Мукоед Вадим, Нерезенко.
Работу выполнил: Субботин Антон Ученик 10 класса МБОУ «Тирянская СОШ»
Решение простейших тригонометрических уравнений. Синус, косинус считая Приложи старание. Алгоритм не забываем: Четверть – знак – название.
История создания тригонометрии. Тригонометрия в других науках. Работу выполнила ученица 9А класса Лаур Татьяна.
История тригонометрии Работа учителя ГОУ СОШ 1315 Мирсалимовой Е.Н.
Тригонометрические функции. Историческая справка. Подготовил: Ученик 10 класса Резников Алексей.
История возникновения тригонометрии до XVI века. Учебный проект выполнили ученицы 10«А» класса МОУ СОШ 27 Русскова Таня и Дорофеева Оксана Руководитель:
Транксрипт:

Выполнила : Семина Елена, обучающаяся 9 А класса МБОУ СОШ 6 г. о. Железнодорожный Руководитель проекта : Злобина Елена Григорьевна, учитель математики МБОУ СОШ 6 г. о. Железнодорожный

Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников. В данном случае измерение треугольников следует понимать как решение треугольников, т. е. определение сторон, углов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, а также задач планиметрии, стереометрии, астрономии и других приводятся к задаче решения треугольников.

Возникновение тригонометрии связано с землемерением, астрономией и строительным делом.

Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.). Позднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Значительный вклад в развитие тригонометрии внесли арабские ученые Аль - Батани ( ) и Абу - ль - Вафа, Мухамед - бен Мухамед ( ), который составил таблицы синусов и тангенсов через 10 с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара ( р. 1114, год смерти неизвестен ) и азербайджанский астроном и математик Насиреддин Туси Мухамед ( ). Кроме того, Насиреддин Туси в своей работе « Трактат о полном четырехстороннике » изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

Длительную историю имеет понятие синус. Фактически различные отношения отрезков треугольника и окружности ( а по существу, и тригонометрические функции ) встречаются уже в III веке до н. э. в работах великих математиков Древней Греции – Евклида, Архимеда, Апполония Пергского. В римский период эти отношения достаточно систематично исследовались Менелаем (I век н. э.), хотя и не приобрели специального названия. Современный синус, например, изучался как полухорда, на которую опирается центральный угол, или как хорда удвоенной дуги.

Слово косинус намного моложе. Косинус – это сокращение латинского выражения completely sinus, т. е. дополнительный синус ( или иначе синус дополнительной дуги ; ) В прямоугольном треугольнике косинус острого угла равен отношению катета, выходящего из этого угла ( прилежащего катета ), к гипотенузе.

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс ( а также котангенс ) введен в X веке арабским математиком Абу - ль - Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы ; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе. Название « тангенс », происходящее от латинского tanger ( касаться ), появилось в 1583 г. Tangens переводится как « касающийся » ( линия тангенсов – касательная к единичной окружности ).

* Синусом угла a называется отношение ординаты точки M к R; * Косинусом угла а называется отношение абсциссы точки M к R; * Тангенсом угла а называется отношение ординаты точки M к её абсциссе ; * Котангенсом угла а называется отношение абсциссы точки M к её ординате.

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника ( ) – творца гелиоцентрической системы мира, Тихо Браге ( ) и Иогана Кеплера ( ), а также в работах математика Франсуа Виета ( ), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер, т. е. Факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов.

Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес ( например, для решения задач определения местонахождения судна, предсказания затемнения и т. д.). Астрономов интересовали соотношения между сторонами и углами сферических треугольников. И надо заметить, что математики древности удачно справлялись с поставленными задачами.

Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.

Аналитическая теория тригонометрических функций в основном была создана выдающимся математиком XVIII веке Леонардом Эйлером ( ) членом Петербургской Академии наук. Громадное научное наследие Эйлера включает блестящие результаты, относящиеся к математическому анализу, геометрии, теории чисел, механике и другим приложениям математики. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. После Эйлера тригонометрия приобрела форму исчисления : различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее проще.

* Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях.

* решать геометрические задачи ; * применять полученные знания на практике ; * Развивать у учащихся критичность мышления и творческие способности