Фотоэффект – это явление вырывания электронов из вещества под действием света.
Из истории фотоэффекта… 1887 год – немецкий физик Генрих Герц
Второе открытие фотоэффекта 1888 год – немецкий ученый Вильгельм Гальвакс.
Третье открытие фотоэффекта 1888 год – итальянец Аугусто Риги. Он же придумал первый фотоэлемент – прибор, преобразующий энергию света в электрический ток.
Четвертое и окончательное открытие… 1888 год – русский ученый Александр Григорьевич Столетов. Он подверг фотоэффект тщательному экспериментальному исследованию и установил законы фотоэффекта.
Схема установки Столетова 1-й вариант опыта ! V
! V
Вывод, который сделал вывод Столетов… …при освещении цинковой пластины ультрафиолетовыми лучами из неё вырываются электроны. Под действием ЭП они устремляются к сетке и в цепи возникает электрический ток, который называют фототоком.
Задачи, которые ставил перед собой Столетов… 1. Нужно было установить, от чего зависит количество электронов, вырываемых из металла, за 1 с? 2. От чего зависит скорость фотоэлектронов, а значит, и кинетическая энергия фотоэлектронов?
Схема установки, на которой Столетов установил законы фотоэффекта
Первый закон фотоэффекта Сила тока насыщения (фактически, число выбиваемых с поверхности электронов за единицу времени) прямо пропорциональна интенсивности светового излучения, падающего на поверхность тела. I нас ˜ световому потоку! Внимание! Световой поток, падающий на фотокатод, увеличивается, а его спектральный состав остается неизменным: Ф 2 > Ф 1
Второй закон фотоэффекта Если частоту света увеличить, то при неизменном световом потоке запирающее напряжение увеличивается, а, следовательно, увеличивается и кинетическая энергия фотоэлектронов. Максимальная скорость фотоэлектронов зависит только от частоты падающего света и не зависит от его интенсивности. Важно! По модулю запирающего напряжения можно судить о скорости фотоэлектронов и об их кинетической энергии!
Третий закон фотоэффекта Для каждого вещества существует минимальная частота (так называемая красная граница фотоэффекта), ниже которой фотоэффект невозможен.
Красная граница фотоэффекта При < min ни при какой интенсивности волны падающего на фотокатод света фотоэффект не произойдет!
Применение фотоэффекта На явлении фотоэффекта основано действие фотоэлектронных приборов, получивших разнообразное применение в различных областях науки и техники. В настоящее время практически невозможно указать отрасли производства, где бы не использовались фотоэлементы - приемники излучения, работающие на основе фотоэффекта и преобразующие энергию излучения в электрическую.
Вакуумный фотоэлемент Простейшим фотоэлементом с внешним фотоэффектом является вакуумный фотоэлемент. Он представляет собой откачанный стеклянный баллон, внутренняя поверхность которого (за исключением окошка для доступа излучения) покрыта фоточувствительным слоем, служащим фотокатодом. В качестве анода обычно используется кольцо или сетка, помещаемая в центре баллона.
Вакуумные фотоэлементы безынерционны, и для них наблюдается строгая пропорциональность фототока интенсивности излучения. Эти свойства позволяют использовать вакуумные фотоэлементы в качестве фотометрических приборов, например фотоэлектрический экспонометр, люксметр (измеритель освещенности) и т.д.
Фоторезисторы Фотоэлементы с внутренним фотоэффектом, называемые полупроводниковыми фотоэлементами или фотосопротивлениями (фоторезисторами), обладают гораздо большей интегральной чувствительностью, чем вакуумные. Недостаток фотосопротивлений – их заметная инерционность, поэтому они непригодны для регистрации быстропеременных световых потоков.
Вентильные фотоэлементы Фотоэлементы с вентильным фотоэффектом, называемые вентильными фотоэлементами (фотоэлементы с запирающим слоем), обладая, подобно элементам с внешним фотоэффектом, строгой пропорциональностью фототока интенсивности излучения, имеют большую по сравнению с ними интегральную чувствительность и не нуждаются во внешнем источнике э.д.с. Кремниевые и другие вентильные фотоэлементы применяются для создания солнечных батарей, непосредственно преобразующих световую энергию в электрическую.
Такие батареи уже в течение многих лет работают на космических спутниках и кораблях. Их КПД приблизительно 10% и, как показывают теоретические расчеты, может быть доведён до 22%, что открывает широкие перспективы их использования в качестве источников для бытовых и производственных нужд.
Солнцемобиль, солнечная станция